You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(venv) D:\jackgu\ai\chatTTS-ui>python app.py
Starting...
{'sha256_asset_Decoder_pt': '9964e36e840f0e3a748c5f716fe6de6490d2135a5f5155f4a642d51860e2ec38', 'sha256_asset_DVAE_full_pt': '553eb75763511e23f3e5f86303e2163c5ca775489d637fb635d979c8ae58bbe5', 'sha256_asset_GPT_pt': 'd7d4ee6461ea097a2be23eb40d73fb94ad3b3d39cb64fbb50cb3357fd466cadb', 'sha256_asset_spk_stat_pt': '3228d8a4cbbf349d107a1b76d2f47820865bd3c9928c4bdfe1cefd5c7071105f', 'sha256_asset_tokenizer_pt': 'e911ae7c6a7c27953433f35c44227a67838fe229a1f428503bdb6cd3d1bcc69c', 'sha256_asset_Vocos_pt': '09a670eda1c08b740013679c7a90ebb7f1a97646ea7673069a6838e6b51d6c58'}
Start:0.0.0.0:9966
voice='1031.pt'
当前使用音色 seed_path='D:/jackgu/ai/chatTTS-ui/speaker/1031.pt'
prompt='[break_6]'
te=['如果我们需要您提供某些信息以帮助您在使用产品时遇到的疑问,以及向您推荐第三方服务供应商,我们会严格遵守隐私政策来处理这些信息。如果您已经开始使用米林空间,则表示您已经接受、并同意我们按照此隐私政策中所描述的方式来处理和使用您的个人信息']
code: 0%| | 0/2048(max) [00:00, ?it/s]We detected that you are passing past_key_values as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriate Cache class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)
D:\jackgu\ai\chatTTS-ui\venv\Lib\site-packages\transformers\models\llama\modeling_llama.py:660: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at ..\aten\src\ATen\native\transformers\cuda\sdp_utils.cpp:263.)
attn_output = torch.nn.functional.scaled_dot_product_attention(
code: 50%|████████████████████████████████████████████████████████████████████████████████▋ | 1020/2048(max) [00:24, 41.10it/s]
推理时长: 26.26 秒�
The text was updated successfully, but these errors were encountered:
我在windows11上安装了cuda12.0 cdnn 8.9.5版本,也通过命令验证了是否安装成功
我一开始使用docker compose -f docker-compose.gpu.yaml up -d启动程序
2024-09-19 10:34:57 voice='1031.pt'
2024-09-19 10:34:57 当前使用音色 seed_path='/app/speaker/1031.pt'
2024-09-19 10:34:57 prompt='[break_6]'
2024-09-19 10:34:57 te=['如果我们需要您提供某些信息以帮助您在使用产品时遇到的疑问,以及向您推荐第三方服务供应商,我们会严格遵守隐私政策来处理这些信息。如果您已经开始使用米林空间,则表示您已经接受、并同意我们按照此隐私政策中所描述的方式来处理和使用您的个人信息']
2024-09-19 10:35:16
code: 0%| | 0/2048(max) [00:00, ?it/s]
code: 0%| | 1/2048(max) [00:00, 6.08it/s]
code: 0%| | 7/2048(max) [00:00, 29.60it/s]
code: 1%| | 13/2048(max) [00:00, 40.77it/s]
code: 1%| | 18/2048(max) [00:00, 42.57it/s]
code: 1%| | 24/2048(max) [00:00, 45.97it/s]
code: 1%|▏ | 29/2048(max) [00:00, 45.43it/s]
code: 2%|▏ | 35/2048(max) [00:00, 48.61it/s]
code: 2%|▏ | 41/2048(max) [00:00, 50.29it/s]
code: 2%|▏ | 47/2048(max) [00:01, 52.38it/s]
code: 3%|▎ | 53/2048(max) [00:01, 53.86it/s]
code: 3%|▎ | 60/2048(max) [00:01, 56.05it/s]
code: 3%|▎ | 66/2048(max) [00:01, 56.92it/s]
code: 4%|▎ | 72/2048(max) [00:01, 56.83it/s]
code: 4%|▍ | 78/2048(max) [00:01, 57.54it/s]
code: 4%|▍ | 84/2048(max) [00:01, 56.57it/s]
code: 4%|▍ | 90/2048(max) [00:01, 56.23it/s]
code: 5%|▍ | 96/2048(max) [00:01, 56.70it/s]
code: 5%|▍ | 102/2048(max) [00:02, 56.34it/s]
code: 5%|▌ | 108/2048(max) [00:02, 55.56it/s]
code: 6%|▌ | 114/2048(max) [00:02, 55.80it/s]
code: 6%|▌ | 121/2048(max) [00:02, 57.57it/s]
code: 6%|▌ | 127/2048(max) [00:02, 56.40it/s]
code: 6%|▋ | 133/2048(max) [00:02, 56.91it/s]
code: 7%|▋ | 140/2048(max) [00:02, 58.28it/s]
code: 7%|▋ | 147/2048(max) [00:02, 59.40it/s]
code: 7%|▋ | 153/2048(max) [00:02, 59.32it/s]
code: 8%|▊ | 160/2048(max) [00:02, 60.18it/s]
code: 8%|▊ | 167/2048(max) [00:03, 60.41it/s]
code: 8%|▊ | 174/2048(max) [00:03, 56.03it/s]
code: 9%|▉ | 181/2048(max) [00:03, 57.31it/s]
code: 9%|▉ | 187/2048(max) [00:03, 56.26it/s]
code: 9%|▉ | 193/2048(max) [00:03, 52.90it/s]
code: 10%|▉ | 199/2048(max) [00:03, 53.94it/s]
code: 10%|█ | 205/2048(max) [00:03, 53.86it/s]
code: 10%|█ | 211/2048(max) [00:03, 55.02it/s]
code: 11%|█ | 217/2048(max) [00:04, 55.52it/s]
code: 11%|█ | 223/2048(max) [00:04, 54.78it/s]
code: 11%|█ | 229/2048(max) [00:04, 56.21it/s]
code: 12%|█▏ | 236/2048(max) [00:04, 58.13it/s]
code: 12%|█▏ | 242/2048(max) [00:04, 57.25it/s]
code: 12%|█▏ | 249/2048(max) [00:04, 58.97it/s]
code: 12%|█▎ | 256/2048(max) [00:04, 60.23it/s]
code: 13%|█▎ | 263/2048(max) [00:04, 59.41it/s]
code: 13%|█▎ | 270/2048(max) [00:04, 60.76it/s]
code: 14%|█▎ | 277/2048(max) [00:05, 61.26it/s]
code: 14%|█▍ | 284/2048(max) [00:05, 58.80it/s]
code: 14%|█▍ | 290/2048(max) [00:05, 58.67it/s]
code: 14%|█▍ | 296/2048(max) [00:05, 57.72it/s]
code: 15%|█▍ | 302/2048(max) [00:05, 56.15it/s]
code: 15%|█▌ | 308/2048(max) [00:05, 56.43it/s]
code: 15%|█▌ | 314/2048(max) [00:05, 57.15it/s]
code: 16%|█▌ | 320/2048(max) [00:05, 57.75it/s]
code: 16%|█▌ | 327/2048(max) [00:05, 58.89it/s]
code: 16%|█▋ | 333/2048(max) [00:06, 53.50it/s]
code: 17%|█▋ | 339/2048(max) [00:06, 54.78it/s]
code: 17%|█▋ | 346/2048(max) [00:06, 57.77it/s]
code: 17%|█▋ | 352/2048(max) [00:06, 57.61it/s]
code: 17%|█▋ | 358/2048(max) [00:06, 56.51it/s]
code: 18%|█▊ | 365/2048(max) [00:06, 58.04it/s]
code: 18%|█▊ | 371/2048(max) [00:06, 53.99it/s]
code: 18%|█▊ | 377/2048(max) [00:06, 55.22it/s]
code: 19%|█▊ | 383/2048(max) [00:06, 56.36it/s]
code: 19%|█▉ | 389/2048(max) [00:07, 57.10it/s]
code: 19%|█▉ | 395/2048(max) [00:07, 57.60it/s]
code: 20%|█▉ | 401/2048(max) [00:07, 58.16it/s]
code: 20%|█▉ | 408/2048(max) [00:07, 59.43it/s]
code: 20%|██ | 414/2048(max) [00:07, 58.85it/s]
code: 21%|██ | 420/2048(max) [00:07, 58.46it/s]
code: 21%|██ | 427/2048(max) [00:07, 59.30it/s]
code: 21%|██ | 434/2048(max) [00:07, 60.24it/s]
code: 22%|██▏ | 441/2048(max) [00:07, 61.35it/s]
code: 22%|██▏ | 448/2048(max) [00:07, 61.88it/s]
code: 22%|██▏ | 455/2048(max) [00:08, 61.71it/s]
code: 23%|██▎ | 462/2048(max) [00:08, 56.65it/s]
code: 23%|██▎ | 468/2048(max) [00:08, 57.37it/s]
code: 23%|██▎ | 474/2048(max) [00:08, 54.22it/s]
code: 23%|██▎ | 480/2048(max) [00:08, 55.15it/s]
code: 24%|██▎ | 486/2048(max) [00:08, 53.66it/s]
code: 24%|██▍ | 492/2048(max) [00:08, 55.10it/s]
code: 24%|██▍ | 499/2048(max) [00:08, 56.84it/s]
code: 25%|██▍ | 506/2048(max) [00:09, 58.34it/s]
code: 25%|██▌ | 513/2048(max) [00:09, 59.50it/s]
code: 25%|██▌ | 520/2048(max) [00:09, 60.27it/s]
code: 26%|██▌ | 527/2048(max) [00:09, 61.20it/s]
code: 26%|██▌ | 534/2048(max) [00:09, 59.24it/s]
code: 26%|██▋ | 541/2048(max) [00:09, 60.30it/s]
code: 27%|██▋ | 548/2048(max) [00:09, 61.45it/s]
code: 27%|██▋ | 555/2048(max) [00:09, 61.34it/s]
code: 27%|██▋ | 562/2048(max) [00:09, 61.00it/s]
code: 28%|██▊ | 569/2048(max) [00:10, 53.05it/s]
code: 28%|██▊ | 575/2048(max) [00:10, 53.66it/s]
code: 28%|██▊ | 581/2048(max) [00:10, 53.50it/s]
code: 29%|██▊ | 587/2048(max) [00:10, 51.99it/s]
code: 29%|██▉ | 593/2048(max) [00:10, 52.87it/s]
code: 29%|██▉ | 599/2048(max) [00:10, 54.71it/s]
code: 30%|██▉ | 605/2048(max) [00:10, 55.60it/s]
code: 30%|██▉ | 611/2048(max) [00:10, 56.55it/s]
code: 30%|███ | 617/2048(max) [00:10, 57.49it/s]
code: 30%|███ | 623/2048(max) [00:11, 56.99it/s]
code: 31%|███ | 629/2048(max) [00:11, 57.52it/s]
code: 31%|███ | 635/2048(max) [00:11, 54.98it/s]
code: 31%|███▏ | 641/2048(max) [00:11, 52.56it/s]
code: 32%|███▏ | 647/2048(max) [00:11, 49.02it/s]
code: 32%|███▏ | 652/2048(max) [00:11, 48.85it/s]
code: 32%|███▏ | 658/2048(max) [00:11, 50.08it/s]
code: 32%|███▏ | 664/2048(max) [00:11, 50.67it/s]
code: 33%|███▎ | 670/2048(max) [00:12, 50.05it/s]
code: 33%|███▎ | 676/2048(max) [00:12, 51.17it/s]
code: 33%|███▎ | 682/2048(max) [00:12, 51.59it/s]
code: 34%|███▎ | 688/2048(max) [00:12, 51.35it/s]
code: 34%|███▍ | 694/2048(max) [00:12, 50.39it/s]
code: 34%|███▍ | 700/2048(max) [00:12, 51.81it/s]
code: 34%|███▍ | 706/2048(max) [00:12, 52.50it/s]
code: 35%|███▍ | 712/2048(max) [00:12, 45.68it/s]
code: 35%|███▌ | 717/2048(max) [00:13, 45.05it/s]
code: 35%|███▌ | 722/2048(max) [00:13, 46.09it/s]
code: 36%|███▌ | 728/2048(max) [00:13, 48.41it/s]
code: 36%|███▌ | 734/2048(max) [00:13, 49.94it/s]
code: 36%|███▌ | 740/2048(max) [00:13, 49.29it/s]
code: 36%|███▋ | 746/2048(max) [00:13, 49.88it/s]
code: 37%|███▋ | 752/2048(max) [00:13, 52.18it/s]
code: 37%|███▋ | 758/2048(max) [00:13, 53.51it/s]
code: 37%|███▋ | 765/2048(max) [00:13, 55.75it/s]
code: 38%|███▊ | 772/2048(max) [00:14, 57.23it/s]
code: 38%|███▊ | 778/2048(max) [00:14, 57.73it/s]
code: 38%|███▊ | 784/2048(max) [00:14, 53.40it/s]
code: 39%|███▊ | 790/2048(max) [00:14, 50.77it/s]
code: 39%|███▉ | 796/2048(max) [00:14, 48.76it/s]
code: 39%|███▉ | 802/2048(max) [00:14, 49.85it/s]
code: 39%|███▉ | 808/2048(max) [00:14, 46.45it/s]
code: 40%|███▉ | 814/2048(max) [00:14, 49.48it/s]
code: 40%|████ | 820/2048(max) [00:14, 51.93it/s]
code: 40%|████ | 826/2048(max) [00:15, 54.04it/s]
code: 41%|████ | 832/2048(max) [00:15, 55.30it/s]
code: 41%|████ | 838/2048(max) [00:15, 56.35it/s]
code: 41%|████ | 844/2048(max) [00:15, 49.11it/s]
code: 42%|████▏ | 850/2048(max) [00:15, 49.93it/s]
code: 42%|████▏ | 856/2048(max) [00:15, 51.19it/s]
code: 42%|████▏ | 862/2048(max) [00:15, 52.28it/s]
code: 42%|████▏ | 868/2048(max) [00:15, 53.93it/s]
code: 43%|████▎ | 874/2048(max) [00:15, 53.83it/s]
code: 43%|████▎ | 880/2048(max) [00:16, 50.00it/s]
code: 43%|████▎ | 886/2048(max) [00:16, 51.49it/s]
code: 44%|████▎ | 892/2048(max) [00:16, 52.64it/s]
code: 44%|████▍ | 898/2048(max) [00:16, 50.67it/s]
code: 44%|████▍ | 904/2048(max) [00:16, 47.56it/s]
code: 44%|████▍ | 910/2048(max) [00:16, 49.86it/s]
code: 45%|████▍ | 916/2048(max) [00:16, 52.33it/s]
code: 45%|████▌ | 922/2048(max) [00:16, 50.59it/s]
code: 45%|████▌ | 928/2048(max) [00:17, 51.60it/s]
code: 46%|████▌ | 934/2048(max) [00:17, 53.22it/s]
code: 46%|████▌ | 940/2048(max) [00:17, 49.52it/s]
code: 46%|████▌ | 946/2048(max) [00:17, 50.42it/s]
code: 46%|████▋ | 952/2048(max) [00:17, 49.32it/s]
code: 47%|████▋ | 957/2048(max) [00:17, 49.03it/s]
code: 47%|████▋ | 962/2048(max) [00:17, 43.23it/s]
code: 47%|████▋ | 967/2048(max) [00:17, 44.90it/s]
code: 48%|████▊ | 974/2048(max) [00:18, 49.44it/s]
code: 48%|████▊ | 981/2048(max) [00:18, 52.75it/s]
code: 48%|████▊ | 988/2048(max) [00:18, 55.07it/s]
code: 49%|████▊ | 994/2048(max) [00:18, 55.95it/s]
code: 49%|████▉ | 1000/2048(max) [00:18, 52.68it/s]
code: 49%|████▉ | 1006/2048(max) [00:18, 54.11it/s]
code: 49%|████▉ | 1012/2048(max) [00:18, 55.44it/s]
code: 50%|████▉ | 1018/2048(max) [00:18, 56.47it/s]
code: 50%|████▉ | 1020/2048(max) [00:18, 54.06it/s]
2024-09-19 10:35:16 /home/venv/lib/python3.9/site-packages/torch/nn/modules/conv.py:306: UserWarning: Plan failed with a cudnnException: CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR: cudnnFinalize Descriptor Failed cudnn_status: CUDNN_STATUS_NOT_SUPPORTED (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:919.)
2024-09-19 10:35:16 return F.conv1d(input, weight, bias, self.stride,
2024-09-19 10:35:16 推理时长: 18.91 秒
�
�
大概信息如上,好像没用到cuda加速
接着我又使用源代码部署方式,也执行了pip install torch==2.2.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118,运行同样的操作和文本内容,以下是我的详细信息,还没有之前docker运行的速度快?
(venv) D:\jackgu\ai\chatTTS-ui>python app.py
Starting...
{'sha256_asset_Decoder_pt': '9964e36e840f0e3a748c5f716fe6de6490d2135a5f5155f4a642d51860e2ec38', 'sha256_asset_DVAE_full_pt': '553eb75763511e23f3e5f86303e2163c5ca775489d637fb635d979c8ae58bbe5', 'sha256_asset_GPT_pt': 'd7d4ee6461ea097a2be23eb40d73fb94ad3b3d39cb64fbb50cb3357fd466cadb', 'sha256_asset_spk_stat_pt': '3228d8a4cbbf349d107a1b76d2f47820865bd3c9928c4bdfe1cefd5c7071105f', 'sha256_asset_tokenizer_pt': 'e911ae7c6a7c27953433f35c44227a67838fe229a1f428503bdb6cd3d1bcc69c', 'sha256_asset_Vocos_pt': '09a670eda1c08b740013679c7a90ebb7f1a97646ea7673069a6838e6b51d6c58'}
Start:0.0.0.0:9966
voice='1031.pt'
当前使用音色 seed_path='D:/jackgu/ai/chatTTS-ui/speaker/1031.pt'
prompt='[break_6]'
te=['如果我们需要您提供某些信息以帮助您在使用产品时遇到的疑问,以及向您推荐第三方服务供应商,我们会严格遵守隐私政策来处理这些信息。如果您已经开始使用米林空间,则表示您已经接受、并同意我们按照此隐私政策中所描述的方式来处理和使用您的个人信息']
code: 0%| | 0/2048(max) [00:00, ?it/s]We detected that you are passing
past_key_values
as a tuple and this is deprecated and will be removed in v4.43. Please use an appropriateCache
class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)D:\jackgu\ai\chatTTS-ui\venv\Lib\site-packages\transformers\models\llama\modeling_llama.py:660: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at ..\aten\src\ATen\native\transformers\cuda\sdp_utils.cpp:263.)
attn_output = torch.nn.functional.scaled_dot_product_attention(
code: 50%|████████████████████████████████████████████████████████████████████████████████▋ | 1020/2048(max) [00:24, 41.10it/s]
推理时长: 26.26 秒�
The text was updated successfully, but these errors were encountered: