forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBatchLinearAlgebra.cu
541 lines (461 loc) · 19 KB
/
BatchLinearAlgebra.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#include <ATen/Context.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/cuda/PinnedMemoryAllocator.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/native/LinearAlgebraUtils.h>
#include <ATen/native/cuda/MiscUtils.h>
#include <THC/THC.h> // for USE_MAGMA
#ifdef USE_MAGMA
#include <magma.h>
#include <magma_types.h>
#endif
namespace at {
namespace native {
#ifdef USE_MAGMA
template<class scalar_t>
void magmaGesv(
magma_int_t n, magma_int_t nrhs, scalar_t* dA, magma_int_t ldda,
magma_int_t* ipiv, scalar_t* dB, magma_int_t lddb, magma_int_t* info) {
AT_ERROR("gesv only takes float or double Tensors");
}
template<class scalar_t>
void magmaGesvBatched(
magma_int_t n, magma_int_t nrhs, scalar_t** dA_array, magma_int_t ldda,
magma_int_t** dipiv_array, scalar_t** dB_array, magma_int_t lddb,
magma_int_t* dinfo_array, magma_int_t batch_count, const MAGMAQueue& magma_queue) {
AT_ERROR("gesv only takes float or double Tensors");
}
template<class scalar_t>
void magmaGetrfBatched(
magma_int_t m, magma_int_t n, scalar_t** dA_array, magma_int_t ldda,
magma_int_t** ipiv_array, magma_int_t* info_array, magma_int_t batchsize,
const MAGMAQueue& magma_queue) {
AT_ERROR("getrf only takes float or double Tensors");
}
template<class scalar_t>
void magmaGetriBatched(
magma_int_t n, scalar_t** dA_array, magma_int_t ldda,
magma_int_t** ipiv_array, scalar_t** dinvA_array, magma_int_t lddia,
magma_int_t* info_array, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
AT_ERROR("getri only takes float or double Tensors");
}
template<class scalar_t>
void magmaCholeskySolve(
magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, scalar_t* dA, magma_int_t ldda,
scalar_t* dB, magma_int_t lddb, magma_int_t* info) {
AT_ERROR("cholesky_solve only takes float or double Tensors");
}
template<class scalar_t>
void magmaCholeskySolveBatched(
magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, scalar_t** dA_array, magma_int_t ldda,
scalar_t** dB_array, magma_int_t lddb, magma_int_t& info, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
AT_ERROR("cholesky_solve only takes float or double Tensors");
}
template<class scalar_t>
void magmaCholesky(
magma_uplo_t uplo, magma_int_t n, scalar_t* dA,
magma_int_t ldda, magma_int_t* info) {
AT_ERROR("cholesky only takes float or double Tensors");
}
template<class scalar_t>
void magmaCholeskyBatched(
magma_uplo_t uplo, magma_int_t n, scalar_t** dA_array, magma_int_t ldda,
magma_int_t* info_array, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
AT_ERROR("cholesky only takes float or double Tensors");
}
template<>
void magmaGesvBatched<double>(
magma_int_t n, magma_int_t nrhs, double** dA_array, magma_int_t ldda,
magma_int_t** dipiv_array, double** dB_array, magma_int_t lddb,
magma_int_t* dinfo_array, magma_int_t batch_count, const MAGMAQueue& magma_queue) {
magma_dgesv_batched(n, nrhs, dA_array, ldda, dipiv_array, dB_array, lddb, dinfo_array, batch_count, magma_queue.get_queue());
}
template<>
void magmaGesvBatched<float>(
magma_int_t n, magma_int_t nrhs, float** dA_array, magma_int_t ldda,
magma_int_t** dipiv_array, float** dB_array, magma_int_t lddb,
magma_int_t* dinfo_array, magma_int_t batch_count, const MAGMAQueue& magma_queue) {
magma_sgesv_batched(n, nrhs, dA_array, ldda, dipiv_array, dB_array, lddb, dinfo_array, batch_count, magma_queue.get_queue());
}
template<>
void magmaGesv<double>(
magma_int_t n, magma_int_t nrhs, double* dA, magma_int_t ldda,
magma_int_t* ipiv, double* dB, magma_int_t lddb, magma_int_t* info) {
magma_dgesv_gpu(n, nrhs, dA, ldda, ipiv, dB, lddb, info);
}
template<>
void magmaGesv<float>(
magma_int_t n, magma_int_t nrhs, float* dA, magma_int_t ldda,
magma_int_t* ipiv, float* dB, magma_int_t lddb, magma_int_t* info) {
magma_sgesv_gpu(n, nrhs, dA, ldda, ipiv, dB, lddb, info);
}
template<>
void magmaGetrfBatched<double>(
magma_int_t m, magma_int_t n, double** dA_array, magma_int_t ldda,
magma_int_t** ipiv_array, magma_int_t* info_array, magma_int_t batchsize,
const MAGMAQueue& magma_queue) {
magma_dgetrf_batched(m, n, dA_array, ldda, ipiv_array, info_array, batchsize, magma_queue.get_queue());
}
template<>
void magmaGetrfBatched<float>(
magma_int_t m, magma_int_t n, float** dA_array, magma_int_t ldda,
magma_int_t** ipiv_array, magma_int_t* info_array, magma_int_t batchsize,
const MAGMAQueue& magma_queue) {
magma_sgetrf_batched(m, n, dA_array, ldda, ipiv_array, info_array, batchsize, magma_queue.get_queue());
}
template<>
void magmaGetriBatched<double>(
magma_int_t n, double** dA_array, magma_int_t ldda,
magma_int_t** ipiv_array, double** dinvA_array, magma_int_t lddia,
magma_int_t* info_array, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
magma_dgetri_outofplace_batched(n, dA_array, ldda, ipiv_array, dinvA_array, lddia, info_array, batchsize, magma_queue.get_queue());
}
template<>
void magmaGetriBatched<float>(
magma_int_t n, float** dA_array, magma_int_t ldda,
magma_int_t** ipiv_array, float** dinvA_array, magma_int_t lddia,
magma_int_t* info_array, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
magma_sgetri_outofplace_batched(n, dA_array, ldda, ipiv_array, dinvA_array, lddia, info_array, batchsize, magma_queue.get_queue());
}
template<>
void magmaCholeskySolve<double>(
magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, double* dA, magma_int_t ldda,
double* dB, magma_int_t lddb, magma_int_t* info) {
magma_dpotrs_gpu(uplo, n, nrhs, dA, ldda, dB, lddb, info);
}
template<>
void magmaCholeskySolve<float>(
magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, float* dA, magma_int_t ldda,
float* dB, magma_int_t lddb, magma_int_t* info) {
magma_spotrs_gpu(uplo, n, nrhs, dA, ldda, dB, lddb, info);
}
template<>
void magmaCholeskySolveBatched<double>(
magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, double** dA_array, magma_int_t ldda,
double** dB_array, magma_int_t lddb, magma_int_t& info, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
info = magma_dpotrs_batched(uplo, n, nrhs, dA_array, ldda, dB_array, lddb, batchsize, magma_queue.get_queue());
}
template<>
void magmaCholeskySolveBatched<float>(
magma_uplo_t uplo, magma_int_t n, magma_int_t nrhs, float** dA_array, magma_int_t ldda,
float** dB_array, magma_int_t lddb, magma_int_t& info, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
info = magma_spotrs_batched(uplo, n, nrhs, dA_array, ldda, dB_array, lddb, batchsize, magma_queue.get_queue());
}
template<>
void magmaCholesky<double>(
magma_uplo_t uplo, magma_int_t n, double* dA,
magma_int_t ldda, magma_int_t* info) {
magma_dpotrf_gpu(uplo, n, dA, ldda, info);
}
template<>
void magmaCholesky<float>(
magma_uplo_t uplo, magma_int_t n, float* dA,
magma_int_t ldda, magma_int_t* info) {
magma_spotrf_gpu(uplo, n, dA, ldda, info);
}
template<>
void magmaCholeskyBatched<double>(
magma_uplo_t uplo, magma_int_t n, double** dA_array, magma_int_t ldda,
magma_int_t* info_array, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
magma_dpotrf_batched(uplo, n, dA_array, ldda, info_array, batchsize, magma_queue.get_queue());
}
template<>
void magmaCholeskyBatched<float>(
magma_uplo_t uplo, magma_int_t n, float** dA_array, magma_int_t ldda,
magma_int_t* info_array, magma_int_t batchsize, const MAGMAQueue& magma_queue) {
magma_spotrf_batched(uplo, n, dA_array, ldda, info_array, batchsize, magma_queue.get_queue());
}
#endif
#define ALLOCATE_ARRAY(name, type, size, dummy_tensor) \
auto storage_##name = pin_memory<type>(size, dummy_tensor); \
name = static_cast<type*>(storage_##name.data());
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ gesv ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename scalar_t>
static void apply_gesv(Tensor& b, Tensor& A, std::vector<int64_t>& infos) {
#ifndef USE_MAGMA
AT_ERROR("gesv: MAGMA library not found in "
"compilation. Please rebuild with MAGMA.");
#else
auto A_data = A.data<scalar_t>();
auto b_data = b.data<scalar_t>();
magma_int_t n = magma_int_cast(A.size(-2), "A.size(-2)");
magma_int_t nrhs = magma_int_cast(b.size(-1), "b.size(-1)");
if (b.dim() == 2) {
auto ipiv = at::empty({n}, at::kInt);
magma_int_t info = 0;
magmaGesv<scalar_t>(n, nrhs, A_data, n, ipiv.data<magma_int_t>(),
b_data, n, &info);
infos[0] = info;
} else {
auto A_mat_stride = matrixStride(A);
auto b_mat_stride = matrixStride(b);
magma_int_t batch_size = magma_int_cast(batchCount(A), "batchCount");
magma_int_t* info_array;
magma_int_t* ipiv_data;
magma_int_t** ipiv_array;
scalar_t** A_array;
scalar_t** b_array;
ALLOCATE_ARRAY(info_array, magma_int_t, batch_size, b);
ALLOCATE_ARRAY(ipiv_data, magma_int_t, batch_size * n, b);
ALLOCATE_ARRAY(ipiv_array, magma_int_t*, batch_size, b);
ALLOCATE_ARRAY(A_array, scalar_t*, batch_size, b);
ALLOCATE_ARRAY(b_array, scalar_t*, batch_size, b);
// Set up the created arrays
for (int64_t i = 0; i < batch_size; i++) {
A_array[i] = &A_data[i * A_mat_stride];
b_array[i] = &b_data[i * b_mat_stride];
ipiv_array[i] = &ipiv_data[i * n];
}
MAGMAQueue magma_queue(b.get_device());
magmaGesvBatched<scalar_t>(
n, nrhs, A_array, n, ipiv_array, b_array, n,
info_array, batch_size, magma_queue);
for (int64_t i = 0; i < batch_size; i++) {
infos[i] = info_array[i];
}
}
#endif
}
std::tuple<Tensor, Tensor> _gesv_helper_cuda(const Tensor& self, const Tensor& A) {
auto self_working_copy = cloneBatchedColumnMajor(self);
auto A_working_copy = cloneBatchedColumnMajor(A);
std::vector<int64_t> infos(batchCount(self), 0);
AT_DISPATCH_FLOATING_TYPES(self.type(), "gesv", [&]{
apply_gesv<scalar_t>(self_working_copy, A_working_copy, infos);
});
if (self.dim() > 2) {
batchCheckErrors(infos, "gesv");
} else {
singleCheckErrors(infos[0], "gesv");
}
return std::tuple<Tensor, Tensor>(self_working_copy, A_working_copy);
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ inverse ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename scalar_t>
static void apply_inverse(Tensor &self, Tensor &self_inv, std::vector<int64_t>& infos) {
#ifndef USE_MAGMA
AT_ERROR("inverse: MAGMA library not found in "
"compilation. Please rebuild with MAGMA.");
#else
auto self_data = self.data<scalar_t>();
auto self_mat_stride = matrixStride(self);
auto self_inv_data = self_inv.data<scalar_t>();
auto self_inv_mat_stride = matrixStride(self_inv);
magma_int_t batch_size = magma_int_cast(batchCount(self), "batchCount");
magma_int_t n = magma_int_cast(self.size(-2), "self.size(-2)");
magma_int_t* info_array;
magma_int_t* ipiv_data;
magma_int_t** ipiv_array;
scalar_t** self_array;
scalar_t** self_inv_array;
ALLOCATE_ARRAY(info_array, magma_int_t, batch_size, self);
ALLOCATE_ARRAY(ipiv_data, magma_int_t, batch_size * n, self);
ALLOCATE_ARRAY(ipiv_array, magma_int_t*, batch_size, self);
ALLOCATE_ARRAY(self_array, scalar_t*, batch_size, self);
ALLOCATE_ARRAY(self_inv_array, scalar_t*, batch_size, self_inv);
// Set up the created arrays
for (int64_t i = 0; i < batch_size; i++) {
self_array[i] = &self_data[i * self_mat_stride];
self_inv_array[i] = &self_inv_data[i * self_inv_mat_stride];
ipiv_array[i] = &ipiv_data[i * n];
}
MAGMAQueue magma_queue(self.get_device());
magmaGetrfBatched<scalar_t>(
n, n, self_array, n, ipiv_array, info_array,
batch_size, magma_queue);
magmaGetriBatched<scalar_t>(
n, self_array, n, ipiv_array, self_inv_array,
n, info_array, batch_size, magma_queue);
for (int64_t i = 0; i < batch_size; i++) {
infos[i] = info_array[i];
}
#endif
}
// Because this is out-of-place inverse, the predefined macros will
// not work
Tensor _inverse_helper_cuda(const Tensor& self) {
std::vector<int64_t> infos(batchCount(self), 0);
auto self_working_copy = cloneBatchedColumnMajor(self);
auto self_inv_working_copy = cloneBatchedColumnMajor(self);
AT_DISPATCH_FLOATING_TYPES(self.type(), "inverse", [&]{
apply_inverse<scalar_t>(
self_working_copy, self_inv_working_copy, infos);
});
batchCheckErrors(infos, "inverse");
return self_inv_working_copy;
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cholesky_solve ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename scalar_t>
static void apply_cholesky_solve(Tensor& b, Tensor& A, bool upper, int64_t& info) {
#ifndef USE_MAGMA
AT_ERROR("cholesky_solve: MAGMA library not found in "
"compilation. Please rebuild with MAGMA.");
#else
magma_uplo_t uplo = upper ? MagmaUpper : MagmaLower;
auto A_data = A.data<scalar_t>();
auto b_data = b.data<scalar_t>();
magma_int_t n = magma_int_cast(A.size(-2), "A.size(-2)");
magma_int_t nrhs = magma_int_cast(b.size(-1), "b.size(-1)");
int info_tmp;
if (b.dim() == 2) {
magmaCholeskySolve<scalar_t>(uplo, n, nrhs, A_data, n,
b_data, n, &info_tmp);
info = info_tmp;
} else {
auto A_mat_stride = matrixStride(A);
auto b_mat_stride = matrixStride(b);
magma_int_t batch_size = magma_int_cast(batchCount(A), "batchCount");
scalar_t** A_array;
scalar_t** b_array;
ALLOCATE_ARRAY(A_array, scalar_t*, batch_size, b);
ALLOCATE_ARRAY(b_array, scalar_t*, batch_size, b);
// Set up the created arrays
for (int64_t i = 0; i < batch_size; i++) {
A_array[i] = &A_data[i * A_mat_stride];
b_array[i] = &b_data[i * b_mat_stride];
}
MAGMAQueue magma_queue(b.get_device());
magmaCholeskySolveBatched<scalar_t>(
uplo, n, nrhs, A_array, n, b_array, n,
info_tmp, batch_size, magma_queue);
info = info_tmp;
}
#endif
}
Tensor _cholesky_solve_helper_cuda(const Tensor& self, const Tensor& A, bool upper) {
int64_t info = 0;
auto self_working_copy = cloneBatchedColumnMajor(self);
auto A_working_copy = cloneBatchedColumnMajor(A);
AT_DISPATCH_FLOATING_TYPES(self.type(), "cholesky_solve", [&]{
apply_cholesky_solve<scalar_t>(self_working_copy, A_working_copy, upper, info);
});
AT_CHECK(info == 0, "MAGMA cholesky_solve : invalid argument: ", -info);
return self_working_copy;
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ cholesky ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename scalar_t>
static void apply_cholesky(Tensor& self, bool upper, std::vector<int64_t>& infos) {
#ifndef USE_MAGMA
AT_ERROR("cholesky: MAGMA library not found in "
"compilation. Please rebuild with MAGMA.");
#else
magma_uplo_t uplo = upper ? MagmaUpper : MagmaLower;
auto self_data = self.data<scalar_t>();
magma_int_t n = magma_int_cast(self.size(-2), "self.size(-2)");
if (self.dim() == 2) {
magma_int_t info = 0;
magmaCholesky<scalar_t>(uplo, n, self_data, n, &info);
infos[0] = info;
} else {
auto self_mat_stride = matrixStride(self);
magma_int_t batch_size = magma_int_cast(batchCount(self), "batchCount");
magma_int_t* info_array;
scalar_t** self_array;
ALLOCATE_ARRAY(info_array, magma_int_t, batch_size, self);
ALLOCATE_ARRAY(self_array, scalar_t*, batch_size, self);
// Set up the created arrays
for (int64_t i = 0; i < batch_size; i++) {
self_array[i] = &self_data[i * self_mat_stride];
}
MAGMAQueue magma_queue(self.get_device());
magmaCholeskyBatched<scalar_t>(
uplo, n, self_array, n, info_array,
batch_size, magma_queue);
for (int64_t i = 0; i < batch_size; i++) {
infos[i] = info_array[i];
}
}
#endif
}
Tensor _cholesky_helper_cuda(const Tensor& self, bool upper) {
std::vector<int64_t> infos(batchCount(self), 0);
Tensor self_working_copy;
if (upper) {
self_working_copy = cloneBatchedColumnMajor(self.transpose(-1, -2));
} else {
self_working_copy = cloneBatchedColumnMajor(self);
}
AT_DISPATCH_FLOATING_TYPES(self.type(), "cholesky", [&]{
apply_cholesky<scalar_t>(self_working_copy, false, infos);
});
if (self.dim() > 2) {
batchCheckErrors(infos, "cholesky");
} else {
singleCheckErrors(infos[0], "cholesky");
}
if (upper) {
return self_working_copy.transpose(-1, -2);
} else {
return self_working_copy;
}
}
template <typename scalar_t, bool upper>
__global__
void triu_tril_kernel(
scalar_t* result, scalar_t* self, int64_t k, int64_t N,
int64_t res_batch_stride, int64_t res_row_stride, int64_t res_col_stride,
int64_t self_batch_stride, int64_t self_row_stride, int64_t self_col_stride, int64_t self_ncol) {
int64_t linear_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (linear_idx >= N) {
return;
}
int64_t self_batch_idx = blockIdx.y;
int64_t row = linear_idx / self_ncol;
int64_t col = linear_idx % self_ncol;
bool mask = upper ? (col - row >= k) : (col - row <= k);
// Now compute the offset for the self and result tensor
int64_t res_offset = self_batch_idx * res_batch_stride + row * res_row_stride + col * res_col_stride;
int64_t self_offset = self_batch_idx * self_batch_stride + row * self_row_stride + col * self_col_stride;
result[res_offset] = mask ? self[self_offset] : scalar_t(0);
}
template <bool upper>
Tensor& triu_tril_cuda_template(Tensor& result, const Tensor& self, int64_t k, const char* name) {
int64_t n_batches = batchCount(self), mat_size = self.size(-1) * self.size(-2),
res_batch_stride = result.dim() > 2 ? result.stride(-3) : 1,
res_row_stride = result.stride(-2), res_col_stride = result.stride(-1),
self_batch_stride = self.dim() > 2 ? self.stride(-3) : 1,
self_row_stride = self.stride(-2), self_col_stride = self.stride(-1);
dim3 dim_block = cuda::getApplyBlock();
dim3 dim_grid((mat_size + dim_block.x - 1) / dim_block.x, n_batches);
AT_DISPATCH_ALL_TYPES_AND_HALF(self.type(), name, [&]{
triu_tril_kernel<scalar_t, upper>
<<<dim_grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(
result.data<scalar_t>(), self.data<scalar_t>(), k, mat_size,
res_batch_stride, res_row_stride, res_col_stride,
self_batch_stride, self_row_stride, self_col_stride, self.size(-1));
});
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& tril_cuda_(Tensor &self, int64_t k) {
if (!checkTrilTriuBatchContiguous(self)) self = self.contiguous();
return tril_cuda_out(self, self, k);
}
Tensor& tril_cuda_out(Tensor &result, const Tensor& self, int64_t k) {
if (result.sizes() != self.sizes()) {
result.resize_as_(self);
}
if (self.numel() == 0) {
return result;
}
Tensor self_c = checkTrilTriuBatchContiguous(self) ? self : self.contiguous();
return triu_tril_cuda_template<false>(result, self_c, k, "tril");
}
Tensor& triu_cuda_(Tensor &self, int64_t k) {
if (!checkTrilTriuBatchContiguous(self)) self = self.contiguous();
return triu_cuda_out(self, self, k);
}
Tensor& triu_cuda_out(Tensor &result, const Tensor& self, int64_t k) {
if (result.sizes() != self.sizes()) {
result.resize_as_(self);
}
if (self.numel() == 0) {
return result;
}
Tensor self_c = checkTrilTriuBatchContiguous(self) ? self : self.contiguous();
return triu_tril_cuda_template<true>(result, self_c, k, "triu");
}
}} // namespace at::native
#undef ALLOCATE_ARRAY