forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCCachingAllocator.cu
309 lines (264 loc) · 8.37 KB
/
THCCachingAllocator.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#include "caffe2/core/THCCachingAllocator_gpu.h"
#include <deque>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <unordered_map>
#include <cuda_runtime_api.h>
#include "caffe2/core/context_gpu.h"
//
// Yet another caching allocator for CUDA device allocations.
//
// - The allocator attempts to find the smallest cached block that will fit the
// requested size. If the block is larger than the requested size, it may be
// split. If no block is found, the allocator will delegate to cudaMalloc.
// - If the cudaMalloc fails, the allocator will free all cached blocks that
// are not split and retry the allocation.
// - Large (>1MB) and small allocation requests are handled separately. Large
// allocation requests can be filled by a cudaMalloc call of the exact size.
// Small requests will allocate and split a 1MB buffer, if necessary.
//
// With this allocator, allocations and frees should logically be considered
// "usages" of the memory segment associated with streams, just like kernel
// launches. The programmer must insert the proper synchronization if memory
// segments are used from multiple streams.
//
// Thread Safety: the allocator is NOT thread safe. Calls to { Alloc, Free }
// must be synchronized by the programmer.
//
namespace {
const size_t kRoundSmall = 512; // round up small allocs to 512 bytes
const size_t kRoundLarge = 131072; // round up large allocs to 128 KiB
const size_t kSmallAlloc = 1048576; // largest "small" allocation is 1 MiB
struct Block {
int device; // gpu
cudaStream_t stream; // allocation stream
size_t size; // block size in bytes
char* ptr; // memory address
bool allocated; // in-use flag
Block* prev; // prev block if split from a larger allocation
Block* next; // next block if split from a larger allocation
int event_count; // number of outstanding CUDA events
Block(int device, cudaStream_t stream, size_t size, char* ptr = nullptr)
: device(device),
stream(stream),
size(size),
ptr(ptr),
allocated(0),
prev(nullptr),
next(nullptr),
event_count(0) {}
};
static bool BlockComparator(const Block* a, const Block* b) {
if (a->device != b->device) {
return a->device < b->device;
}
if (a->stream != b->stream) {
return (uintptr_t)a->stream < (uintptr_t)b->stream;
}
if (a->size != b->size) {
return a->size < b->size;
}
return (uintptr_t)a->ptr < (uintptr_t)b->ptr;
}
static size_t roundSize(size_t size) {
if (size < kRoundSmall) {
size = kRoundSmall;
} else if (size < kSmallAlloc) {
size += kRoundSmall - 1 - (size - 1) % kRoundSmall;
} else {
size += kRoundLarge - 1 - (size - 1) % kRoundLarge;
}
return size;
}
} // namespace
namespace caffe2 {
struct THCCachingAllocatorImpl {
typedef bool (*Comparison)(const Block*, const Block*);
typedef std::set<Block*, Comparison> FreeBlocks;
// lock around all operations
std::mutex mutex;
// cached blocks larger than 1 MB
FreeBlocks largeBlocks_;
// cached blocks 1 MB or smaller
FreeBlocks smallBlocks_;
// allocated blocks by device pointer
std::unordered_map<void*, Block*> allocatedBlocks_;
THCCachingAllocatorImpl()
: largeBlocks_(BlockComparator), smallBlocks_(BlockComparator) {}
~THCCachingAllocatorImpl() {
emptyCache();
}
/** allocates a block which is safe to use from the provided stream */
cudaError_t Alloc(void** devPtr, size_t size, cudaStream_t stream) {
int device;
cudaError_t err = cudaGetDevice(&device);
if (err != cudaSuccess) {
return err;
}
size = roundSize(size);
bool small = size <= kSmallAlloc;
Block search_key(device, stream, size);
auto& free_blocks = small ? smallBlocks_ : largeBlocks_;
Block* block = nullptr;
Block* remaining = nullptr;
auto it = free_blocks.lower_bound(&search_key);
if (it != free_blocks.end() && (*it)->device == device &&
(*it)->stream == stream) {
block = *it;
free_blocks.erase(it);
} else {
void* ptr;
size_t alloc_size = small ? kSmallAlloc : size;
err = cudaMallocRetry(device, &ptr, alloc_size);
if (err != cudaSuccess) {
return err;
}
block = new Block(device, stream, alloc_size, (char*)ptr);
}
if (block->size - size >= (small ? kRoundSmall : kSmallAlloc + 1)) {
remaining = block;
block = new Block(device, stream, size, block->ptr);
block->prev = remaining->prev;
if (block->prev) {
block->prev->next = block;
}
block->next = remaining;
remaining->prev = block;
remaining->ptr += size;
remaining->size -= size;
free_blocks.insert(remaining);
}
block->allocated = true;
allocatedBlocks_[block->ptr] = block;
*devPtr = (void*)block->ptr;
return cudaSuccess;
}
cudaError_t Free(void* ptr) {
if (!ptr) {
return cudaSuccess;
}
auto it = allocatedBlocks_.find(ptr);
if (it == allocatedBlocks_.end()) {
return cudaErrorInvalidDevicePointer;
}
Block* block = it->second;
allocatedBlocks_.erase(it);
block->allocated = false;
freeBlock(block);
return cudaSuccess;
}
/** returns cached blocks to the system allocator */
cudaError_t emptyCache() {
cudaError_t err =
freeBlocks(largeBlocks_, largeBlocks_.begin(), largeBlocks_.end());
if (err != cudaSuccess) {
return err;
}
err = freeBlocks(smallBlocks_, smallBlocks_.begin(), smallBlocks_.end());
if (err != cudaSuccess) {
return err;
}
return cudaSuccess;
}
/** moves a block into the free block list */
void freeBlock(Block* block) {
CAFFE_ENFORCE(!block->allocated && block->event_count == 0);
bool small = block->size <= kSmallAlloc;
auto& free_blocks = small ? smallBlocks_ : largeBlocks_;
tryMergeBlocks(block, block->prev, free_blocks);
tryMergeBlocks(block, block->next, free_blocks);
free_blocks.insert(block);
}
/** combine previously split blocks */
void tryMergeBlocks(Block* dst, Block* src, FreeBlocks& free_blocks) {
if (!src || src->allocated || src->event_count > 0) {
return;
}
if (dst->prev == src) {
dst->ptr = src->ptr;
dst->prev = src->prev;
if (dst->prev) {
dst->prev->next = dst;
}
} else {
dst->next = src->next;
if (dst->next) {
dst->next->prev = dst;
}
}
dst->size += src->size;
free_blocks.erase(src);
delete src;
}
cudaError_t cudaMallocRetry(int device, void** devPtr, size_t size) {
// Try cudaMalloc. If cudaMalloc fails, frees all non-split cached blocks
// and retries.
cudaError_t err = cudaMalloc(devPtr, size);
if (err != cudaSuccess) {
cudaGetLastError();
err = freeCachedBlocks(device);
if (err != cudaSuccess) {
return err;
}
err = cudaMalloc(devPtr, size);
if (err != cudaSuccess) {
return err;
}
}
return cudaSuccess;
}
cudaError_t freeCachedBlocks(int device) {
// Free all non-split cached blocks on device
Block lower_bound(device, nullptr, 0);
Block upper_bound(device + 1, nullptr, 0);
cudaError_t err = freeBlocks(
largeBlocks_,
largeBlocks_.lower_bound(&lower_bound),
largeBlocks_.lower_bound(&upper_bound));
if (err != cudaSuccess) {
return err;
}
err = freeBlocks(
smallBlocks_,
smallBlocks_.lower_bound(&lower_bound),
smallBlocks_.lower_bound(&upper_bound));
return err;
}
cudaError_t freeBlocks(
FreeBlocks& blocks,
FreeBlocks::iterator it,
FreeBlocks::iterator end) {
// Frees all non-split blocks between `it` and `end`
while (it != end) {
Block* block = *it;
if (!block->prev && !block->next) {
cudaError_t err = cudaFree((void*)block->ptr);
if (err != cudaSuccess) {
return err;
}
auto cur = it;
++it;
blocks.erase(cur);
delete block;
} else {
++it;
}
}
return cudaSuccess;
}
};
THCCachingAllocator::THCCachingAllocator()
: _impl(new THCCachingAllocatorImpl()) {}
THCCachingAllocator::~THCCachingAllocator() {
delete _impl;
}
cudaError_t
THCCachingAllocator::Alloc(void** refPtr, size_t nbytes, cudaStream_t stream) {
return _impl->Alloc(refPtr, nbytes, stream);
}
cudaError_t THCCachingAllocator::Free(void* ptr) {
return _impl->Free(ptr);
}
} // namespace caffe2