-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_core.py
110 lines (79 loc) · 4.38 KB
/
inference_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
from model.eval_network import STCN
from model.aggregate import aggregate
from util.tensor_util import pad_divide_by
from model import models_vit
import timm
assert timm.__version__ == "0.3.2" # version check
def interpolate_pos_embed_2D(pos_embed, kh, kw):
num_extra_tokens = 1
model_pos_tokens = pos_embed[:, num_extra_tokens:, :]
model_token_size = int((model_pos_tokens.shape[1]//2)**0.5)
# pos_embed = net.pos_embed
model_pos_tokens = pos_embed[:, num_extra_tokens:(model_token_size*model_token_size + 1), :] # bs, N, C
extra_pos_tokens = pos_embed[:, :num_extra_tokens]
embedding_size = extra_pos_tokens.shape[-1]
if kh != model_token_size or kw != model_token_size: # do interpolation
model_pos_tokens_temp = model_pos_tokens.reshape(-1, model_token_size, model_token_size, embedding_size).contiguous().permute(0, 3, 1, 2) # bs, c, h, w
search_pos_tokens = torch.nn.functional.interpolate(
model_pos_tokens_temp, size=(kh, kw), mode='bicubic', align_corners=False)
search_pos_tokens = search_pos_tokens.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
else:
search_pos_tokens = model_pos_tokens
new_pos_embed = torch.cat((extra_pos_tokens, search_pos_tokens, search_pos_tokens), dim=1)
new_pos_embed_three_frame = torch.cat((extra_pos_tokens, search_pos_tokens, search_pos_tokens, search_pos_tokens), dim=1)
return new_pos_embed, new_pos_embed_three_frame
class InferenceCore_ViT:
def __init__(self, prop_net:models_vit, images, num_objects, pos_embed_two_frame):
self.prop_net = prop_net
# self.mem_every = mem_every
# self.include_last = include_last
# True dimensions
t = images.shape[1]
h, w = images.shape[-2:]
# Pad each side to multiple of 16
images, self.pad = pad_divide_by(images, 16)
# Padded dimensions
nh, nw = images.shape[-2:]
self.images = images
self.device = 'cuda'
self.k = num_objects
# Background included, not always consistent (i.e. sum up to 1)
self.prob = torch.zeros((self.k+1, t, 1, nh, nw), dtype=torch.float32, device=self.device)
self.prob[0] = 1e-7 # for the background
self.t, self.h, self.w = t, h, w
self.nh, self.nw = nh, nw
self.kh = self.nh//16
self.kw = self.nw//16
pos_embed_two_frame_new, pos_embed_three_frame_new = interpolate_pos_embed_2D(pos_embed_two_frame, self.kh, self.kw) # 75.1 variant
self.prop_net.pos_embed_two_frame = torch.nn.Parameter(pos_embed_two_frame_new)
self.prop_net.pos_embed_three_frame = torch.nn.Parameter(pos_embed_three_frame_new)
print('after interpolation:')
print(self.prop_net.pos_embed_two_frame.shape)
print('init inference_core')
def encode_key(self, idx):
result = self.prop_net.encode_key(self.images[:,idx].cuda())
return result
def do_pass(self, target_initial_mask, idx, end_idx):
# self.mem_bank.add_memory(key_k, key_v)
closest_ti = end_idx
# Note that we never reach closest_ti, just the frame before it
this_range = range(idx+1, closest_ti)
end = closest_ti - 1
for ti in this_range:
mask_list = []
for obj_index in range(self.k): # for different objects. here we can also use previous frames
target_mask = target_initial_mask[obj_index].unsqueeze(0).unsqueeze(0) # 1,1,1, H, W
m16_f1_v1, m8_f1_v1, m4_f1_v1 = self.prop_net(memory_frames=self.images[:,idx].unsqueeze(1), mask_frames=target_mask, query_frame=self.images[:,ti], mode='backbone')
out_mask = self.prop_net(m16=m16_f1_v1, m8 = m8_f1_v1, m4 = m4_f1_v1, mode='segmentation_single_onject')
mask_list.append(out_mask)
out_mask = torch.stack(mask_list, dim=0).flatten(0, 1) #num, 1, 1, h, w
# do an concat here
out_mask = aggregate(out_mask, keep_bg=True)
self.prob[:,ti] = out_mask
return closest_ti
def interact(self, mask, frame_idx, end_idx):
mask, _ = pad_divide_by(mask.cuda(), 16) # 2, 1, 480, 912
self.prob[:, frame_idx] = aggregate(mask, keep_bg=True) # the 1st frame
# Propagate
self.do_pass(mask, frame_idx, end_idx)