-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathDCShadowNet_test_single.py
84 lines (68 loc) · 3.59 KB
/
DCShadowNet_test_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import time, itertools
from dataset import ImageFolder
from torchvision import transforms
from torch.utils.data import DataLoader
from networks import *
from utils_loss import *
from glob import glob
from PIL import Image
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
class DCShadowNet(object) :
def __init__(self, args):
self.model_name = 'DCShadowNet'
self.result_dir = args.result_dir
self.dataset = args.dataset
self.datasetpath = args.datasetpath
self.ch = args.ch
self.n_res = args.n_res
self.img_size = args.img_size
self.device = args.device
print("##### Information #####")
print("# dataset : ", self.dataset)
print("# datasetpath : ", self.datasetpath)
def build_model(self):
self.test_transform = transforms.Compose([
transforms.Resize((self.img_size, self.img_size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
self.testA = ImageFolder(os.path.join(self.datasetpath), self.test_transform)
self.testA_loader = DataLoader(self.testA, batch_size=1, shuffle=False)
self.genA2B = ResnetGenerator(input_nc=3, output_nc=3, ngf=self.ch, n_blocks=self.n_res, img_size=self.img_size, light=True).to(self.device)
def load(self, dir, step):
params = torch.load(os.path.join(dir, self.dataset + '_params_%07d.pt' % step), map_location=torch.device(self.device))
self.genA2B.load_state_dict(params['genA2B'])
def test(self):
model_list = glob(os.path.join(self.result_dir, self.dataset, 'model', '*.pt'))
print(model_list)
if not len(model_list) == 0:
model_list.sort()
iter = int(model_list[-1].split('_')[-1].split('.')[0])
for i in range(-1,0,1):
self.load(os.path.join(self.result_dir, self.dataset, 'model'), iter)
print(" [*] Load SUCCESS")
self.genA2B.eval()
path_fakeB=os.path.join(self.result_dir, 'output')
print('output saved in:', path_fakeB)
if not os.path.exists(path_fakeB):
os.makedirs(path_fakeB)
path_realAfakeB=os.path.join(self.result_dir, 'input_output')
print('input_output saved in:', path_realAfakeB)
if not os.path.exists(path_realAfakeB):
os.makedirs(path_realAfakeB)
self.test_list = [os.path.splitext(f) for f in os.listdir(os.path.join(self.datasetpath)) if any(f.endswith(suffix) for suffix in IMG_EXTENSIONS)]
for n, in_name in enumerate(self.test_list):
print('predicting: %d / %d' % (n + 1, len(self.test_list)))
img_name = in_name[0]
im_suf = in_name[-1]
img = Image.open(os.path.join(self.datasetpath, img_name + im_suf)).convert('RGB')
real_A = (self.test_transform(img).unsqueeze(0)).to(self.device)
fake_A2B, _, _ = self.genA2B(real_A)
A_real = RGB2BGR(tensor2numpy(denorm(real_A[0])))
B_fake = RGB2BGR(tensor2numpy(denorm(fake_A2B[0])))
A2B = np.concatenate((A_real, B_fake), 1)
cv2.imwrite(os.path.join(path_fakeB, '%s.png' % img_name), B_fake * 255.0)
cv2.imwrite(os.path.join(path_realAfakeB,'%s.png' % img_name), A2B * 255.0)