-
Notifications
You must be signed in to change notification settings - Fork 41
/
dragonbox_to_chars.cpp
544 lines (482 loc) · 26.5 KB
/
dragonbox_to_chars.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
// Copyright 2020-2024 Junekey Jeon
//
// The contents of this file may be used under the terms of
// the Apache License v2.0 with LLVM Exceptions.
//
// (See accompanying file LICENSE-Apache or copy at
// https://llvm.org/foundation/relicensing/LICENSE.txt)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#include "dragonbox/dragonbox_to_chars.h"
#ifndef JKJ_STATIC_DATA_SECTION
#define JKJ_STATIC_DATA_SECTION
#endif
// C++17 if constexpr
#if defined(__cpp_if_constexpr) && __cpp_if_constexpr >= 201606L
#define JKJ_HAS_IF_CONSTEXPR 1
#elif __cplusplus >= 201703L
#define JKJ_HAS_IF_CONSTEXPR 1
#elif defined(_MSC_VER) && _MSC_VER >= 1911 && _MSVC_LANG >= 201703L
#define JKJ_HAS_IF_CONSTEXPR 1
#else
#define JKJ_HAS_IF_CONSTEXPR 0
#endif
#if JKJ_HAS_IF_CONSTEXPR
#define JKJ_IF_CONSTEXPR if constexpr
#else
#define JKJ_IF_CONSTEXPR if
#endif
#if defined(__GNUC__) || defined(__clang__)
#define JKJ_FORCEINLINE inline __attribute__((always_inline))
#elif defined(_MSC_VER)
#define JKJ_FORCEINLINE __forceinline
#else
#define JKJ_FORCEINLINE inline
#endif
namespace jkj {
namespace dragonbox {
namespace detail {
// These "//"'s are to prevent clang-format to ruin this nice alignment.
// Thanks to reddit user u/mcmcc:
// https://www.reddit.com/r/cpp/comments/so3wx9/dragonbox_110_is_released_a_fast_floattostring/hw8z26r/?context=3
static constexpr char radix_100_table[200] JKJ_STATIC_DATA_SECTION = {
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4', //
'0', '5', '0', '6', '0', '7', '0', '8', '0', '9', //
'1', '0', '1', '1', '1', '2', '1', '3', '1', '4', //
'1', '5', '1', '6', '1', '7', '1', '8', '1', '9', //
'2', '0', '2', '1', '2', '2', '2', '3', '2', '4', //
'2', '5', '2', '6', '2', '7', '2', '8', '2', '9', //
'3', '0', '3', '1', '3', '2', '3', '3', '3', '4', //
'3', '5', '3', '6', '3', '7', '3', '8', '3', '9', //
'4', '0', '4', '1', '4', '2', '4', '3', '4', '4', //
'4', '5', '4', '6', '4', '7', '4', '8', '4', '9', //
'5', '0', '5', '1', '5', '2', '5', '3', '5', '4', //
'5', '5', '5', '6', '5', '7', '5', '8', '5', '9', //
'6', '0', '6', '1', '6', '2', '6', '3', '6', '4', //
'6', '5', '6', '6', '6', '7', '6', '8', '6', '9', //
'7', '0', '7', '1', '7', '2', '7', '3', '7', '4', //
'7', '5', '7', '6', '7', '7', '7', '8', '7', '9', //
'8', '0', '8', '1', '8', '2', '8', '3', '8', '4', //
'8', '5', '8', '6', '8', '7', '8', '8', '8', '9', //
'9', '0', '9', '1', '9', '2', '9', '3', '9', '4', //
'9', '5', '9', '6', '9', '7', '9', '8', '9', '9' //
};
static constexpr char radix_100_head_table[200] JKJ_STATIC_DATA_SECTION = {
'0', '.', '1', '.', '2', '.', '3', '.', '4', '.', //
'5', '.', '6', '.', '7', '.', '8', '.', '9', '.', //
'1', '.', '1', '.', '1', '.', '1', '.', '1', '.', //
'1', '.', '1', '.', '1', '.', '1', '.', '1', '.', //
'2', '.', '2', '.', '2', '.', '2', '.', '2', '.', //
'2', '.', '2', '.', '2', '.', '2', '.', '2', '.', //
'3', '.', '3', '.', '3', '.', '3', '.', '3', '.', //
'3', '.', '3', '.', '3', '.', '3', '.', '3', '.', //
'4', '.', '4', '.', '4', '.', '4', '.', '4', '.', //
'4', '.', '4', '.', '4', '.', '4', '.', '4', '.', //
'5', '.', '5', '.', '5', '.', '5', '.', '5', '.', //
'5', '.', '5', '.', '5', '.', '5', '.', '5', '.', //
'6', '.', '6', '.', '6', '.', '6', '.', '6', '.', //
'6', '.', '6', '.', '6', '.', '6', '.', '6', '.', //
'7', '.', '7', '.', '7', '.', '7', '.', '7', '.', //
'7', '.', '7', '.', '7', '.', '7', '.', '7', '.', //
'8', '.', '8', '.', '8', '.', '8', '.', '8', '.', //
'8', '.', '8', '.', '8', '.', '8', '.', '8', '.', //
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.', //
'9', '.', '9', '.', '9', '.', '9', '.', '9', '.' //
};
static void print_1_digit(int n, char* buffer) noexcept {
JKJ_IF_CONSTEXPR(('0' & 0xf) == 0) { *buffer = char('0' | n); }
else {
*buffer = char('0' + n);
}
}
static void print_2_digits(int n, char* buffer) noexcept {
stdr::memcpy(buffer, radix_100_table + n * 2, 2);
}
// These digit generation routines are inspired by James Anhalt's itoa algorithm:
// https://github.com/jeaiii/itoa
// The main idea is for given n, find y such that floor(10^k * y / 2^32) = n holds,
// where k is an appropriate integer depending on the length of n.
// For example, if n = 1234567, we set k = 6. In this case, we have
// floor(y / 2^32) = 1,
// floor(10^2 * ((10^0 * y) mod 2^32) / 2^32) = 23,
// floor(10^2 * ((10^2 * y) mod 2^32) / 2^32) = 45, and
// floor(10^2 * ((10^4 * y) mod 2^32) / 2^32) = 67.
// See https://jk-jeon.github.io/posts/2022/02/jeaiii-algorithm/ for more explanation.
JKJ_FORCEINLINE static void print_9_digits(stdr::uint_least32_t s32, int& exponent,
char*& buffer) noexcept {
// -- IEEE-754 binary32
// Since we do not cut trailing zeros in advance, s32 must be of 6~9 digits
// unless the original input was subnormal.
// In particular, when it is of 9 digits it shouldn't have any trailing zeros.
// -- IEEE-754 binary64
// In this case, s32 must be of 7~9 digits unless the input is subnormal,
// and it shouldn't have any trailing zeros if it is of 9 digits.
if (s32 >= UINT32_C(100000000)) {
// 9 digits.
// 1441151882 = ceil(2^57 / 1'0000'0000) + 1
auto prod = s32 * UINT64_C(1441151882);
prod >>= 25;
stdr::memcpy(buffer, radix_100_head_table + int(prod >> 32) * 2, 2);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 6);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 8);
exponent += 8;
buffer += 10;
}
else if (s32 >= UINT32_C(1000000)) {
// 7 or 8 digits.
// 281474978 = ceil(2^48 / 100'0000) + 1
auto prod = s32 * UINT64_C(281474978);
prod >>= 16;
auto const head_digits = int(prod >> 32);
// If s32 is of 8 digits, increase the exponent by 7.
// Otherwise, increase it by 6.
exponent += (6 + int(head_digits >= 10));
// Write the first digit and the decimal point.
stdr::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[head_digits * 2 + 1];
// Remaining 6 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / UINT32_C(1000000))) {
// The number of characters actually need to be written is:
// 1, if only the first digit is nonzero, which means that either s32 is of 7
// digits or it is of 8 digits but the second digit is zero, or
// 3, otherwise.
// Note that buffer[2] is never '0' if s32 is of 7 digits, because the input is
// never zero.
buffer += (1 + (int(head_digits >= 10) & int(buffer[2] > '0')) * 2);
}
else {
// At least one of the remaining 6 digits are nonzero.
// After this adjustment, now the first destination becomes buffer + 2.
buffer += int(head_digits >= 10);
// Obtain the next two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
// Remaining 4 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 10000)) {
buffer += (3 + int(buffer[3] > '0'));
}
else {
// At least one of the remaining 4 digits are nonzero.
// Obtain the next two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
// Remaining 2 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 100)) {
buffer += (5 + int(buffer[5] > '0'));
}
else {
// Obtain the last two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 6);
buffer += (7 + int(buffer[7] > '0'));
}
}
}
}
else if (s32 >= 10000) {
// 5 or 6 digits.
// 429497 = ceil(2^32 / 1'0000)
auto prod = s32 * UINT64_C(429497);
auto const head_digits = int(prod >> 32);
// If s32 is of 6 digits, increase the exponent by 5.
// Otherwise, increase it by 4.
exponent += (4 + int(head_digits >= 10));
// Write the first digit and the decimal point.
stdr::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[head_digits * 2 + 1];
// Remaining 4 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 10000)) {
// The number of characters actually written is 1 or 3, similarly to the case of
// 7 or 8 digits.
buffer += (1 + (int(head_digits >= 10) & int(buffer[2] > '0')) * 2);
}
else {
// At least one of the remaining 4 digits are nonzero.
// After this adjustment, now the first destination becomes buffer + 2.
buffer += int(head_digits >= 10);
// Obtain the next two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
// Remaining 2 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 100)) {
buffer += (3 + int(buffer[3] > '0'));
}
else {
// Obtain the last two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
buffer += (5 + int(buffer[5] > '0'));
}
}
}
else if (s32 >= 100) {
// 3 or 4 digits.
// 42949673 = ceil(2^32 / 100)
auto prod = s32 * UINT64_C(42949673);
auto const head_digits = int(prod >> 32);
// If s32 is of 4 digits, increase the exponent by 3.
// Otherwise, increase it by 2.
exponent += (2 + int(head_digits >= 10));
// Write the first digit and the decimal point.
stdr::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[head_digits * 2 + 1];
// Remaining 2 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 100)) {
// The number of characters actually written is 1 or 3, similarly to the case of
// 7 or 8 digits.
buffer += (1 + (int(head_digits >= 10) & int(buffer[2] > '0')) * 2);
}
else {
// At least one of the remaining 2 digits are nonzero.
// After this adjustment, now the first destination becomes buffer + 2.
buffer += int(head_digits >= 10);
// Obtain the last two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
buffer += (3 + int(buffer[3] > '0'));
}
}
else {
// 1 or 2 digits.
// If s32 is of 2 digits, increase the exponent by 1.
exponent += int(s32 >= 10);
// Write the first digit and the decimal point.
stdr::memcpy(buffer, radix_100_head_table + s32 * 2, 2);
// This third character may be overwritten later but we don't care.
buffer[2] = radix_100_table[s32 * 2 + 1];
// The number of characters actually written is 1 or 3, similarly to the case of
// 7 or 8 digits.
buffer += (1 + (int(s32 >= 10) & int(buffer[2] > '0')) * 2);
}
}
template <>
char* to_chars<ieee754_binary32, stdr::uint_least32_t>(stdr::uint_least32_t s32,
int exponent,
char* buffer) noexcept {
// Print significand.
print_9_digits(s32, exponent, buffer);
// Print exponent and return
if (exponent < 0) {
stdr::memcpy(buffer, "E-", 2);
buffer += 2;
exponent = -exponent;
}
else {
buffer[0] = 'E';
buffer += 1;
}
if (exponent >= 10) {
print_2_digits(exponent, buffer);
buffer += 2;
}
else {
print_1_digit(exponent, buffer);
buffer += 1;
}
return buffer;
}
template <>
char*
to_chars<ieee754_binary64, stdr::uint_least64_t>(stdr::uint_least64_t const significand,
int exponent, char* buffer) noexcept {
// Print significand by decomposing it into a 9-digit block and a 8-digit block.
stdr::uint_least32_t first_block, second_block;
bool no_second_block;
if (significand >= UINT64_C(100000000)) {
first_block = stdr::uint_least32_t(significand / UINT64_C(100000000));
second_block =
stdr::uint_least32_t(significand) - first_block * UINT32_C(100000000);
exponent += 8;
no_second_block = (second_block == 0);
}
else {
first_block = stdr::uint_least32_t(significand);
no_second_block = true;
}
if (no_second_block) {
print_9_digits(first_block, exponent, buffer);
}
else {
// We proceed similarly to print_9_digits(), but since we do not need to remove
// trailing zeros, the procedure is a bit simpler.
if (first_block >= UINT32_C(100000000)) {
// The input is of 17 digits, thus there should be no trailing zero at all.
// The first block is of 9 digits.
// 1441151882 = ceil(2^57 / 1'0000'0000) + 1
auto prod = first_block * UINT64_C(1441151882);
prod >>= 25;
stdr::memcpy(buffer, radix_100_head_table + int(prod >> 32) * 2, 2);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 6);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 8);
// The second block is of 8 digits.
// 281474978 = ceil(2^48 / 100'0000) + 1
prod = second_block * UINT64_C(281474978);
prod >>= 16;
prod += 1;
print_2_digits(int(prod >> 32), buffer + 10);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 12);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 14);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 16);
exponent += 8;
buffer += 18;
}
else {
if (first_block >= UINT32_C(1000000)) {
// 7 or 8 digits.
// 281474978 = ceil(2^48 / 100'0000) + 1
auto prod = first_block * UINT64_C(281474978);
prod >>= 16;
auto const head_digits = int(prod >> 32);
stdr::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
buffer[2] = radix_100_table[head_digits * 2 + 1];
exponent += (6 + int(head_digits >= 10));
buffer += int(head_digits >= 10);
// Print remaining 6 digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 6);
buffer += 8;
}
else if (first_block >= 10000) {
// 5 or 6 digits.
// 429497 = ceil(2^32 / 1'0000)
auto prod = first_block * UINT64_C(429497);
auto const head_digits = int(prod >> 32);
stdr::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
buffer[2] = radix_100_table[head_digits * 2 + 1];
exponent += (4 + int(head_digits >= 10));
buffer += int(head_digits >= 10);
// Print remaining 4 digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
buffer += 6;
}
else if (first_block >= 100) {
// 3 or 4 digits.
// 42949673 = ceil(2^32 / 100)
auto prod = first_block * UINT64_C(42949673);
auto const head_digits = int(prod >> 32);
stdr::memcpy(buffer, radix_100_head_table + head_digits * 2, 2);
buffer[2] = radix_100_table[head_digits * 2 + 1];
exponent += (2 + int(head_digits >= 10));
buffer += int(head_digits >= 10);
// Print remaining 2 digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
buffer += 4;
}
else {
// 1 or 2 digits.
stdr::memcpy(buffer, radix_100_head_table + first_block * 2, 2);
buffer[2] = radix_100_table[first_block * 2 + 1];
exponent += int(first_block >= 10);
buffer += (2 + int(first_block >= 10));
}
// Next, print the second block.
// The second block is of 8 digits, but we may have trailing zeros.
// 281474978 = ceil(2^48 / 100'0000) + 1
auto prod = second_block * UINT64_C(281474978);
prod >>= 16;
prod += 1;
print_2_digits(int(prod >> 32), buffer);
// Remaining 6 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / UINT64_C(1000000))) {
buffer += (1 + int(buffer[1] > '0'));
}
else {
// Obtain the next two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 2);
// Remaining 4 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 10000)) {
buffer += (3 + int(buffer[3] > '0'));
}
else {
// Obtain the next two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 4);
// Remaining 2 digits are all zero?
if ((prod & UINT32_C(0xffffffff)) <=
stdr::uint_least32_t((stdr::uint_least64_t(1) << 32) / 100)) {
buffer += (5 + int(buffer[5] > '0'));
}
else {
// Obtain the last two digits.
prod = (prod & UINT32_C(0xffffffff)) * 100;
print_2_digits(int(prod >> 32), buffer + 6);
buffer += (7 + int(buffer[7] > '0'));
}
}
}
}
}
// Print exponent and return
if (exponent < 0) {
stdr::memcpy(buffer, "E-", 2);
buffer += 2;
exponent = -exponent;
}
else {
buffer[0] = 'E';
buffer += 1;
}
if (exponent >= 100) {
// d1 = exponent / 10; d2 = exponent % 10;
// 6554 = ceil(2^16 / 10)
auto d1 = (std::uint_least32_t(exponent) * UINT32_C(6554)) >> 16;
auto d2 = std::uint_least32_t(exponent) - UINT32_C(10) * d1;
print_2_digits(int(d1), buffer);
print_1_digit(int(d2), buffer + 2);
buffer += 3;
}
else if (exponent >= 10) {
print_2_digits(exponent, buffer);
buffer += 2;
}
else {
print_1_digit(exponent, buffer);
buffer += 1;
}
return buffer;
}
}
}
}