-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJohnThesis.aux
executable file
·170 lines (170 loc) · 22.2 KB
/
JohnThesis.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\BKM@entry[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\BKM@entry{id=1,dest={73656374696F6E2A2E32},srcline={48}}{4C495354204F462046494755524553}
\citation{CMS_Higgs_Discovery}
\citation{LHC_view}
\citation{Davis}
\@writefile{toc}{\vspace {-0.25in}}
\@writefile{toc}{\contentsline {part}{\relax \fontsize {12}{14.5}\selectfont \abovedisplayskip 12\p@ plus3\p@ minus7\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \belowdisplayskip \abovedisplayskip \let \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ \topsep =0pt \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ \topsep =0pt \normalfont LIST OF FIGURES}{iii}{section*.2}}
\BKM@entry{id=2,dest={73656374696F6E2A2E34},srcline={48}}{41434B4E4F574C4544474D454E5453}
\@writefile{toc}{\vspace {-0.25in}}
\@writefile{toc}{\contentsline {part}{\relax \fontsize {12}{14.5}\selectfont \abovedisplayskip 12\p@ plus3\p@ minus7\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \belowdisplayskip \abovedisplayskip \let \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ \topsep =0pt \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ \topsep =0pt \normalfont ACKNOWLEDGMENTS}{vi}{section*.4}}
\BKM@entry{id=3,dest={626F6F6B6D61726B3A436F6E74656E742E2D31},srcline={49}}{434F4E54454E54}
\BKM@entry{id=4,dest={636861707465722E31},srcline={51}}{4261736963205061727469636C65205068797369637320616E64204345524E}
\@writefile{toc}{\contentsline {chapter}{\numberline {\rm 1}\rm Basic Particle Physics and CERN}{1}{chapter.1}}
\@writefile{lof}{\addvspace {8\p@ }}
\@writefile{lot}{\addvspace {8\p@ }}
\newlabel{chap:intro}{{1}{1}{Basic Particle Physics and CERN}{chapter.1}{}}
\citation{pdg}
\citation{pdg}
\citation{CMS_Higgs_Discovery}
\citation{CMS_Higgs_Discovery}
\@writefile{lot}{\contentsline {table}{\numberline {1.1}{\ignorespaces Particles in the Standard Model\nobreakspace {}\cite {pdg}\relax }}{5}{table.caption.5}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{tab:particles}{{1.1}{5}{Particles in the Standard Model~\cite {pdg}\relax }{table.caption.5}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Two-photon invariant mass distribution from the CMS detector in 2012\nobreakspace {}\cite {CMS_Higgs_Discovery}. The peak at $125\ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Ge\hspace {-.08em}V\hspace {-0.16em}/\hspace {-0.08em}}c^\text {2}}}\xspace $ is evidence of the Higgs boson.\relax }}{6}{figure.caption.6}}
\newlabel{fig:higgs}{{1.1}{6}{Two-photon invariant mass distribution from the CMS detector in 2012~\cite {CMS_Higgs_Discovery}. The peak at $125\GeVcc $ is evidence of the Higgs boson.\relax }{figure.caption.6}{}}
\BKM@entry{id=5,dest={636861707465722E32},srcline={55}}{4C6172676520486164726F6E20436F6C6C6964657220616E6420436F6D70616374204D756F6E20536F6C656E6F6964}
\BKM@entry{id=6,dest={73656374696F6E2E322E31},srcline={1}}{546865204C6172676520486164726F6E20436F6C6C69646572}
\citation{LHC_view}
\citation{LHC_view}
\@writefile{toc}{\contentsline {chapter}{\numberline {\rm 2}\rm Large Hadron Collider and Compact Muon Solenoid}{7}{chapter.2}}
\@writefile{lof}{\addvspace {8\p@ }}
\@writefile{lot}{\addvspace {8\p@ }}
\newlabel{chap:LHC_CMS}{{2}{7}{Large Hadron Collider and Compact Muon Solenoid}{chapter.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}The Large Hadron Collider}{7}{section.2.1}}
\citation{CMS}
\BKM@entry{id=7,dest={73656374696F6E2E322E32},srcline={23}}{54686520434D53204465746563746F72}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces An aerial view of the LHC near Geneva, Switzerland\nobreakspace {}\cite {LHC_view}.\relax }}{8}{figure.caption.7}}
\newlabel{fig:LHC}{{2.1}{8}{An aerial view of the LHC near Geneva, Switzerland~\cite {LHC_view}.\relax }{figure.caption.7}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}The CMS Detector}{8}{section.2.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces The chain of accelerators that feed protons into the LHC.\relax }}{9}{figure.caption.8}}
\newlabel{fig:acceleratorcomplex}{{2.2}{9}{The chain of accelerators that feed protons into the LHC.\relax }{figure.caption.8}{}}
\citation{Davis}
\citation{Davis}
\BKM@entry{id=8,dest={73756273656374696F6E2E322E322E31},srcline={35}}{486164726F6E2043616C6F72696D65746572}
\citation{HPD}
\citation{HCALPhase1}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Hadron Calorimeter}{10}{subsection.2.2.1}}
\newlabel{HCAL}{{2.2.1}{10}{Hadron Calorimeter}{subsection.2.2.1}{}}
\citation{HB}
\citation{HF}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces A slice of the CMS detector highlighting the different subdetectors and showing different particles and where they are stopped\nobreakspace {}\cite {Davis}.\relax }}{11}{figure.caption.9}}
\newlabel{fig:CMSlayout}{{2.3}{11}{A slice of the CMS detector highlighting the different subdetectors and showing different particles and where they are stopped~\cite {Davis}.\relax }{figure.caption.9}{}}
\BKM@entry{id=9,dest={73756273656374696F6E2E322E322E32},srcline={55}}{53696C69636F6E2050686F746F6D756C7469706C69657273}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces A scintillator tile with blue light and the wavelength shifting optical fiber around the edges and traveling out of the tile.\relax }}{12}{figure.caption.10}}
\newlabel{fig:Tile}{{2.4}{12}{A scintillator tile with blue light and the wavelength shifting optical fiber around the edges and traveling out of the tile.\relax }{figure.caption.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Silicon Photomultipliers}{12}{subsection.2.2.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces Layout of the HCAL showing a single iphi slice of HB, HE, and HF. Each box represents a scintillator tile for HB and HE. HF is read out by quartz fibers, and each channel that is read out by a bundle of quartz fibers is represented by a box.\relax }}{13}{figure.caption.11}}
\newlabel{fig:Depth}{{2.5}{13}{Layout of the HCAL showing a single iphi slice of HB, HE, and HF. Each box represents a scintillator tile for HB and HE. HF is read out by quartz fibers, and each channel that is read out by a bundle of quartz fibers is represented by a box.\relax }{figure.caption.11}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces An array of 48 silicon photomultipliers (SiPMs).\relax }}{15}{figure.caption.12}}
\newlabel{fig:SiPM}{{2.6}{15}{An array of 48 silicon photomultipliers (SiPMs).\relax }{figure.caption.12}{}}
\BKM@entry{id=10,dest={636861707465722E33},srcline={59}}{54657374204265616D}
\BKM@entry{id=11,dest={73656374696F6E2E332E31},srcline={1}}{54657374204265616D205365747570}
\citation{QIE}
\citation{QIE2}
\citation{TB96}
\citation{TB06}
\@writefile{toc}{\contentsline {chapter}{\numberline {\rm 3}\rm Test Beam}{16}{chapter.3}}
\@writefile{lof}{\addvspace {8\p@ }}
\@writefile{lot}{\addvspace {8\p@ }}
\newlabel{chap:test}{{3}{16}{Test Beam}{chapter.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Test Beam Setup}{16}{section.3.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces The HCAL test stand at H2. The scintillator tiles are covered in black tedlar and the new readout modules are connected in the back. The stand can be shifted so the beam can be aimed at different sections.\relax }}{18}{figure.caption.13}}
\newlabel{fig:stand}{{3.1}{18}{The HCAL test stand at H2. The scintillator tiles are covered in black tedlar and the new readout modules are connected in the back. The stand can be shifted so the beam can be aimed at different sections.\relax }{figure.caption.13}{}}
\BKM@entry{id=12,dest={73656374696F6E2E332E32},srcline={18}}{54657374204265616D20416E616C79736973}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Test Beam Analysis}{19}{section.3.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces The emap for a iphi slice of the test stand on the right, which was used to create the figure on the left showing the different places the 150\ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Ge\hspace {-.08em}V\hspace {-0.16em}}}\xspace } muons deposited energy in the test stand.\relax }}{20}{figure.caption.14}}
\newlabel{fig:emap}{{3.2}{20}{The emap for a iphi slice of the test stand on the right, which was used to create the figure on the left showing the different places the 150\GeV \space muons deposited energy in the test stand.\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Charge distribution for a single channel (ieta 19, iphi 5, and depth 2) in a 150\ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Ge\hspace {-.08em}V\hspace {-0.16em}}}\xspace } muon run. The beam in this run was aimed at ieta 19 and iphi 5.\relax }}{21}{figure.caption.15}}
\newlabel{fig:Muon}{{3.3}{21}{Charge distribution for a single channel (ieta 19, iphi 5, and depth 2) in a 150\GeV \space muon run. The beam in this run was aimed at ieta 19 and iphi 5.\relax }{figure.caption.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Average energy deposited (in \ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Me\hspace {-.08em}V\hspace {-0.16em}}}\xspace }) in the channels in the test beam during a 50\ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Ge\hspace {-.08em}V\hspace {-0.16em}}}\xspace } pion run aimed at ieta 19 and iphi 5. The different plots show the different iphi locations.\relax }}{22}{figure.caption.16}}
\newlabel{fig:pionmap}{{3.4}{22}{Average energy deposited (in \MeV ) in the channels in the test beam during a 50\GeV \space pion run aimed at ieta 19 and iphi 5. The different plots show the different iphi locations.\relax }{figure.caption.16}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Charge distribution for a single channel (ieta 19, iphi 5, and depth 2) in a 50\ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Ge\hspace {-.08em}V\hspace {-0.16em}}}\xspace } pion run aimed at ieta 19 and iphi 5. The peak on the right shows the average output charge in response to the incident particles at this energy.\relax }}{23}{figure.caption.17}}
\newlabel{fig:pioncharge}{{3.5}{23}{Charge distribution for a single channel (ieta 19, iphi 5, and depth 2) in a 50\GeV \space pion run aimed at ieta 19 and iphi 5. The peak on the right shows the average output charge in response to the incident particles at this energy.\relax }{figure.caption.17}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Distributions of charge signals from the channel iphi 5, ieta 19, and depth 2 in events with different pion energies.\relax }}{25}{figure.caption.18}}
\newlabel{fig:Log}{{3.6}{25}{Distributions of charge signals from the channel iphi 5, ieta 19, and depth 2 in events with different pion energies.\relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces The average output charge over time in ten time samples, each 25\nobreakspace {}ns long. This is from a run with 150\ensuremath {{\tmspace +\thinmuskip {.1667em}\text {Ge\hspace {-.08em}V\hspace {-0.16em}}}\xspace } muons aimed at iphi 5 and ieta 19. This plot shows the output pulse of the different depths at that location.\relax }}{26}{figure.caption.19}}
\newlabel{fig:PulSh}{{3.7}{26}{The average output charge over time in ten time samples, each 25~ns long. This is from a run with 150\GeV \space muons aimed at iphi 5 and ieta 19. This plot shows the output pulse of the different depths at that location.\relax }{figure.caption.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces The correlation between the trigger timing information and the QIE TDC information.\relax }}{27}{figure.caption.20}}
\newlabel{fig:tdc}{{3.8}{27}{The correlation between the trigger timing information and the QIE TDC information.\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces A SiPM simulation showing an analog version of the output charge along with the same output binned into time samples of 25\nobreakspace {}ns.\relax }}{28}{figure.caption.21}}
\newlabel{fig:bin}{{3.9}{28}{A SiPM simulation showing an analog version of the output charge along with the same output binned into time samples of 25~ns.\relax }{figure.caption.21}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces The binned output charge of events with different TDC values. All pulses have their TDC value in time sample 4 and have a total output charge in the range of 50,000--80,000 fC.\relax }}{29}{figure.caption.22}}
\newlabel{fig:Phase}{{3.10}{29}{The binned output charge of events with different TDC values. All pulses have their TDC value in time sample 4 and have a total output charge in the range of 50,000--80,000 fC.\relax }{figure.caption.22}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.11}{\ignorespaces A more analog version of the SiPM pulse shape obtained from test beam data. It is also fit to a Landau-Gaussian function. The total output charge of signals used to extract this pulse shapes ranges from 10,000 to 29,000 fC.\relax }}{29}{figure.caption.23}}
\newlabel{fig:fit}{{3.11}{29}{A more analog version of the SiPM pulse shape obtained from test beam data. It is also fit to a Landau-Gaussian function. The total output charge of signals used to extract this pulse shapes ranges from 10,000 to 29,000 fC.\relax }{figure.caption.23}{}}
\BKM@entry{id=13,dest={73656374696F6E2E332E33},srcline={129}}{53756D6D617279}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}Summary}{30}{section.3.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.12}{\ignorespaces Fitted pulse shapes for signals in the charge range (A) 10,000--29,000 fC, (B) 29,000--50,000 fC, (C) 50,000--80,000 fC, (D) 80,000--125,000 fC, and (E) 125,000--168,000 fC.\relax }}{31}{figure.caption.24}}
\newlabel{fig:fit_together}{{3.12}{31}{Fitted pulse shapes for signals in the charge range (A) 10,000--29,000 fC, (B) 29,000--50,000 fC, (C) 50,000--80,000 fC, (D) 80,000--125,000 fC, and (E) 125,000--168,000 fC.\relax }{figure.caption.24}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.13}{\ignorespaces Comparison of fits to pulse shapes obtained from different charge ranges.\relax }}{32}{figure.caption.25}}
\newlabel{fig:Overlap}{{3.13}{32}{Comparison of fits to pulse shapes obtained from different charge ranges.\relax }{figure.caption.25}{}}
\BKM@entry{id=14,dest={636861707465722E34},srcline={63}}{5369504D2053696D756C6174696F6E}
\BKM@entry{id=15,dest={73656374696F6E2E342E31},srcline={1}}{5369504D2053696D756C6174696F6E}
\citation{SiPMSimulation_github}
\@writefile{toc}{\contentsline {chapter}{\numberline {\rm 4}\rm SiPM Simulation}{33}{chapter.4}}
\@writefile{lof}{\addvspace {8\p@ }}
\@writefile{lot}{\addvspace {8\p@ }}
\newlabel{chap:sim}{{4}{33}{SiPM Simulation}{chapter.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.1}SiPM Simulation}{33}{section.4.1}}
\BKM@entry{id=16,dest={73656374696F6E2E342E32},srcline={14}}{53696D756C6174696F6E20416E616C79736973}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces The Y11 pulse shape used in the SiPM simulation.\relax }}{34}{figure.caption.26}}
\newlabel{fig:Y11}{{4.1}{34}{The Y11 pulse shape used in the SiPM simulation.\relax }{figure.caption.26}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.2}Simulation Analysis}{34}{section.4.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces The number of incident photons vs.\ output charge of the SiPM simulation with a $y=x$ line for reference. Given the units of the simulation, a perfectly linear device would have all data points falling on the $y=x$ line, but as shown, as the number of incident photons is increased the data points fall short of this line.\relax }}{35}{figure.caption.27}}
\newlabel{fig:SimNon}{{4.2}{35}{The number of incident photons vs.\ output charge of the SiPM simulation with a $y=x$ line for reference. Given the units of the simulation, a perfectly linear device would have all data points falling on the $y=x$ line, but as shown, as the number of incident photons is increased the data points fall short of this line.\relax }{figure.caption.27}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces The SiPM nonlinearity correction factor vs.\ number of pixels fired. The correction factor is the number the output needs to be multiplied by in order to obtain a linear output value. This means a perfectly linear device would always have a correction factor of 1. This data was obtained by shining a laser directly on the SiPM.\relax }}{36}{figure.caption.28}}
\newlabel{fig:NonLin}{{4.3}{36}{The SiPM nonlinearity correction factor vs.\ number of pixels fired. The correction factor is the number the output needs to be multiplied by in order to obtain a linear output value. This means a perfectly linear device would always have a correction factor of 1. This data was obtained by shining a laser directly on the SiPM.\relax }{figure.caption.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces The correction factor vs.\ number of pixels fired. The correction factor is the value that the output needs to be multiplied by in order to obtain a linear output value. This means a perfectly linear device would always have a correction factor of 1. These data was obtained from the SiPM simulation.\relax }}{37}{figure.caption.29}}
\newlabel{fig:Cor}{{4.4}{37}{The correction factor vs.\ number of pixels fired. The correction factor is the value that the output needs to be multiplied by in order to obtain a linear output value. This means a perfectly linear device would always have a correction factor of 1. These data was obtained from the SiPM simulation.\relax }{figure.caption.29}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Output pulses of the SiPM simulation with 10,000 incident photons comparing the effect of changing the recharge time constant on the pixels. The TRC value is the recharge time constant ranging from $10^{-3}$ to $10^3$.\relax }}{38}{figure.caption.30}}
\newlabel{fig:trc}{{4.5}{38}{Output pulses of the SiPM simulation with 10,000 incident photons comparing the effect of changing the recharge time constant on the pixels. The TRC value is the recharge time constant ranging from $10^{-3}$ to $10^3$.\relax }{figure.caption.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Pulse shapes from the SiPM simulation. They are overlaid on top of each other to highlight any differences from increasing the input photon count.\relax }}{39}{figure.caption.31}}
\newlabel{fig:SimPul}{{4.6}{39}{Pulse shapes from the SiPM simulation. They are overlaid on top of each other to highlight any differences from increasing the input photon count.\relax }{figure.caption.31}{}}
\BKM@entry{id=17,dest={73656374696F6E2E342E33},srcline={78}}{53756D6D617279}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces The pulse shapes from the simulation and the test beam data, overlaid for comparison purposes. On the left the charge range is 10,000--29,000 fC and on the right it is 29,000--50,000 fC.\relax }}{40}{figure.caption.32}}
\newlabel{fig:1comparison_together}{{4.7}{40}{The pulse shapes from the simulation and the test beam data, overlaid for comparison purposes. On the left the charge range is 10,000--29,000 fC and on the right it is 29,000--50,000 fC.\relax }{figure.caption.32}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4.3}Summary}{40}{section.4.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces The pulse shapes from the simulation and the test beam data overlaid for comparison purposes. On the left the charge range is 50,000--80,000 fC, on the right it is 80,000--125,000 fC, and on the bottom it is 125,000--168,000 fC.\relax }}{41}{figure.caption.33}}
\newlabel{fig:2comparison_together}{{4.8}{41}{The pulse shapes from the simulation and the test beam data overlaid for comparison purposes. On the left the charge range is 50,000--80,000 fC, on the right it is 80,000--125,000 fC, and on the bottom it is 125,000--168,000 fC.\relax }{figure.caption.33}{}}
\BKM@entry{id=18,dest={636861707465722E35},srcline={67}}{436F6E636C7573696F6E73}
\@writefile{toc}{\contentsline {chapter}{\numberline {\rm 5}\rm Conclusions}{42}{chapter.5}}
\@writefile{lof}{\addvspace {8\p@ }}
\@writefile{lot}{\addvspace {8\p@ }}
\newlabel{chap:concl}{{5}{42}{Conclusions}{chapter.5}{}}
\bibstyle{ieeetr}
\bibdata{JohnThesis}
\BKM@entry{id=19,dest={636861707465722E35},srcline={1}}{4249424C494F475241504859}
\bibcite{CMS_Higgs_Discovery}{1}
\bibcite{LHC_view}{2}
\bibcite{Davis}{3}
\bibcite{pdg}{4}
\bibcite{CMS}{5}
\bibcite{HPD}{6}
\bibcite{HCALPhase1}{7}
\bibcite{HB}{8}
\bibcite{HF}{9}
\bibcite{QIE}{10}
\bibcite{QIE2}{11}
\bibcite{TB96}{12}
\bibcite{TB06}{13}
\bibcite{SiPMSimulation_github}{14}
\@writefile{toc}{\contentsline {chapter}{\relax \fontsize {12}{14.5}\selectfont \abovedisplayskip 12\p@ plus3\p@ minus7\p@ \abovedisplayshortskip \z@ plus3\p@ \belowdisplayshortskip 6.5\p@ plus3.5\p@ minus3\p@ \belowdisplayskip \abovedisplayskip \let \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ \topsep =0pt \leftmargin \leftmargini \parsep 5\p@ plus2.5\p@ minus\p@ \topsep 10\p@ plus4\p@ minus6\p@ \itemsep 5\p@ plus2.5\p@ minus\p@ \topsep =0pt \normalfont BIBLIOGRAPHY}{44}{chapter.5}}