-
Notifications
You must be signed in to change notification settings - Fork 1
/
stl_tree.h
executable file
·1367 lines (1212 loc) · 56.1 KB
/
stl_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_TREE_H
#define __SGI_STL_INTERNAL_TREE_H
/*
Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that
(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the tree, to enable constant time
begin(), and to the rightmost node of the tree, to enable linear time
performance when used with the generic set algorithms (set_union,
etc.);
(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.
*/
#include <stl_algobase.h>
#include <stl_alloc.h>
#include <stl_construct.h>
#include <stl_function.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1375
#endif
typedef bool _Rb_tree_Color_type;
const _Rb_tree_Color_type _S_rb_tree_red = false; //红色定义为0
const _Rb_tree_Color_type _S_rb_tree_black = true; //黑色定义为1
struct _Rb_tree_node_base
{
typedef _Rb_tree_Color_type _Color_type;
typedef _Rb_tree_node_base* _Base_ptr; //红黑树的树节点
_Color_type _M_color; //节点颜色,非红即黑
_Base_ptr _M_parent; //RB树的许多操作,必须知道父节点
_Base_ptr _M_left; //指向左节点
_Base_ptr _M_right; //指向右节点
static _Base_ptr _S_minimum(_Base_ptr __x)
{
while (__x->_M_left != 0) __x = __x->_M_left; //一直向左走,就会找到最小值
return __x; //这是二叉搜索树的特性
}
static _Base_ptr _S_maximum(_Base_ptr __x)
{
while (__x->_M_right != 0) __x = __x->_M_right; //一直向左走,就会找到最大值
return __x; //这也是二叉搜索树的特性
}
};
template <class _Value>
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Value>* _Link_type; //红黑树节点的封装
_Value _M_value_field; //节点值
};
//双层节点结构和双层迭代器结构之间的关系
//_Rb_tree_node继承于_Rb_tree_node_base; _Rb_tree_iterator继承于_Rb_tree_base_iterator;
//在_Rb_tree_base_iterator基类中定义了一个_Rb_tree_node_base基类对象
struct _Rb_tree_base_iterator //红黑树的迭代器实现了两层
{ //RB-tree的迭代器是双向迭代器,但不具备随机访问能力
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
_Base_ptr _M_node; //它用来与容器之间产生一个连结关系(make a reference)
void _M_increment() //operator++会调用此函数
{
if (_M_node->_M_right != 0) { //如果有右子节点. 状况(1)
_M_node = _M_node->_M_right; //向右走
while (_M_node->_M_left != 0) //然后一直向左子树走到底
_M_node = _M_node->_M_left; //即找到了大1的节点
}
else { //如果没有右子节点. 状况(2)
_Base_ptr __y = _M_node->_M_parent; //找出父节点
while (_M_node == __y->_M_right) { //如果现在的节点本身是一个右子节点
_M_node = __y; //就一直上溯,直到不为右节点为止
__y = __y->_M_parent;
}
if (_M_node->_M_right != __y) //若此时的右节点不等于此时的父节点. 状况(3)
_M_node = __y; //此时父节点即为答案,下一个更大的元素
} //否则此时的node为解答. 状况(4)
}
void _M_decrement() //operator--会调用此函数
{
if (_M_node->_M_color == _S_rb_tree_red && //如果是红节点,而且
_M_node->_M_parent->_M_parent == _M_node) //父节点的父节点等于自己. 状况(1)
_M_node = _M_node->_M_right; //右子节点为所求, node为header
else if (_M_node->_M_left != 0) { //如果有左子节点. 状况(2)
_Base_ptr __y = _M_node->_M_left; //令y指向左子节点
while (__y->_M_right != 0) //当y有右子节点是
__y = __y->_M_right; //一直往右节点走到底
_M_node = __y; //最后答案,如果没有右子节点,y即为所求
}
else { //既非根节点,也无左子节点. 状况(3)
_Base_ptr __y = _M_node->_M_parent; //找出父节点
while (_M_node == __y->_M_left) { //现在的节点本身是做子节点
_M_node = __y; //一直交替往下走,直到现在的节点不为左子节点
__y = __y->_M_parent;
}
_M_node = __y; //此时的父节点就为答案
}
}
};
template <class _Value, class _Ref, class _Ptr>
struct _Rb_tree_iterator : public _Rb_tree_base_iterator //RB-tree正规的迭代器
{ //定义5种不同迭代器类型
typedef _Value value_type;
typedef _Ref reference;
typedef _Ptr pointer;
typedef _Rb_tree_iterator<_Value, _Value&, _Value*>
iterator;
typedef _Rb_tree_iterator<_Value, const _Value&, const _Value*>
const_iterator;
typedef _Rb_tree_iterator<_Value, _Ref, _Ptr>
_Self;
typedef _Rb_tree_node<_Value>* _Link_type;
_Rb_tree_iterator() {}
_Rb_tree_iterator(_Link_type __x) { _M_node = __x; }
_Rb_tree_iterator(const iterator& __it) { _M_node = __it._M_node; }
reference operator*() const { return _Link_type(_M_node)->_M_value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
_Self& operator++() { _M_increment(); return *this; }
_Self operator++(int) {
_Self __tmp = *this;
_M_increment();
return __tmp;
}
_Self& operator--() { _M_decrement(); return *this; }
_Self operator--(int) {
_Self __tmp = *this;
_M_decrement();
return __tmp;
}
};
inline bool operator==(const _Rb_tree_base_iterator& __x,
const _Rb_tree_base_iterator& __y) {
return __x._M_node == __y._M_node;
}
inline bool operator!=(const _Rb_tree_base_iterator& __x,
const _Rb_tree_base_iterator& __y) {
return __x._M_node != __y._M_node;
}
#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION
inline bidirectional_iterator_tag
iterator_category(const _Rb_tree_base_iterator&) {
return bidirectional_iterator_tag();
}
inline _Rb_tree_base_iterator::difference_type*
distance_type(const _Rb_tree_base_iterator&) {
return (_Rb_tree_base_iterator::difference_type*) 0;
}
template <class _Value, class _Ref, class _Ptr>
inline _Value* value_type(const _Rb_tree_iterator<_Value, _Ref, _Ptr>&) {
return (_Value*) 0;
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
inline void //全局函数,新节点必须为红色,插入出的父节点也为红色时,就违反了红黑树的规则,
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) //做树形的旋转(以及改变节点的颜色)
{ //x是旋转点
_Rb_tree_node_base* __y = __x->_M_right; //令y为旋转点的右子节点
__x->_M_right = __y->_M_left;
if (__y->_M_left !=0)
__y->_M_left->_M_parent = __x; //别忘了回马枪设定父节点
__y->_M_parent = __x->_M_parent;
//令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
if (__x == __root) //x为根节点
__root = __y;
else if (__x == __x->_M_parent->_M_left) //x为其父节点的左子节点
__x->_M_parent->_M_left = __y;
else //x为其父节点的右子节点
__x->_M_parent->_M_right = __y;
__y->_M_left = __x;
__x->_M_parent = __y;
}
inline void
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) //树形做右旋转,x为旋转点
{
_Rb_tree_node_base* __y = __x->_M_left; //y为旋转点的左子节点
__x->_M_left = __y->_M_right;
if (__y->_M_right != 0)
__y->_M_right->_M_parent = __x; //别忘了回马枪设定父节点
__y->_M_parent = __x->_M_parent;
//令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
if (__x == __root) //x为根节点
__root = __y;
else if (__x == __x->_M_parent->_M_right) //x为其父节点的右子节点
__x->_M_parent->_M_right = __y;
else ////x为其父节点的左子节点
__x->_M_parent->_M_left = __y;
__y->_M_right = __x;
__x->_M_parent = __y;
}
inline void //_Rb_tree_rebalances是全局函数,重新令树形平衡(改变颜色及旋转树形)
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root) //参数一是新增节点,参数二是root
{
__x->_M_color = _S_rb_tree_red; //新节点必须为红
while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) { //父节点必须为黑,不满足条件进行调整
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) { //父节点为祖父节点的左子节点
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right; //令y为伯父节点
if (__y && __y->_M_color == _S_rb_tree_red) { //伯父节点存在,而且为红
__x->_M_parent->_M_color = _S_rb_tree_black; //更改父节点为黑
__y->_M_color = _S_rb_tree_black; //更改伯父节点为黑
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; //更改祖父节点为红
__x = __x->_M_parent->_M_parent;
}
else { //无伯父节点,或伯父节点为黑
if (__x == __x->_M_parent->_M_right) { //如果新节点为父节点的右子节点
__x = __x->_M_parent;
_Rb_tree_rotate_left(__x, __root); //进行一次左旋节点操作,第一参数为左旋点
}
__x->_M_parent->_M_color = _S_rb_tree_black; //改变颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root); //进行一次右旋节点操作,第一参数为右旋点
}
}
else { //父节点为祖父节点的右子节点
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left; //令y为伯父节点
if (__y && __y->_M_color == _S_rb_tree_red) { //如果有伯父节点,而且为红
__x->_M_parent->_M_color = _S_rb_tree_black; //更改父节点为黑
__y->_M_color = _S_rb_tree_black; //更改伯父节点为黑
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; //更改祖父节点为红
__x = __x->_M_parent->_M_parent; //准备继续往上层检查
}
else { //无伯父节点,或伯父节点为黑
if (__x == __x->_M_parent->_M_left) { //如果新节点为父节点的左子节点
__x = __x->_M_parent; //x等于父节点
_Rb_tree_rotate_right(__x, __root); //进行一次右旋节点操作,第一参数为右旋点
}
__x->_M_parent->_M_color = _S_rb_tree_black; //改变父节点位置元素的颜色为黑
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; //祖父节点的颜色为红
_Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root); //进行一次左旋节点操作,第一参数为左旋点
} //这个树形调整就是由上而下的程序
} //有时候需要改变颜色,有时候需要做单旋,有时候需要做双旋
} //有时候做左旋,有时候做右旋
__root->_M_color = _S_rb_tree_black; //但根的颜色始终是黑色
}
inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost)
{
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x = 0;
_Rb_tree_node_base* __x_parent = 0;
if (__y->_M_left == 0) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else
if (__y->_M_right == 0) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else { // __z has two non-null children. Set __y to
__y = __y->_M_right; // __z's successor. __x might be null.
while (__y->_M_left != 0)
__y = __y->_M_left;
__x = __y->_M_right;
}
if (__y != __z) { // relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right) {
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
__STD::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else { // __y == __z
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
if (__leftmost == __z)
if (__z->_M_right == 0) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
if (__rightmost == __z)
if (__z->_M_left == 0) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
if (__y->_M_color != _S_rb_tree_red) {
while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
if (__x == __x_parent->_M_left) {
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) &&
(__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) {
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_left(__x_parent, __root);
break;
}
} else { // same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == 0 ||
__w->_M_right->_M_color == _S_rb_tree_black) &&
(__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_left == 0 ||
__w->_M_left->_M_color == _S_rb_tree_black) {
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _S_rb_tree_black;
}
return __y;
}
// Base class to encapsulate the differences between old SGI-style
// allocators and standard-conforming allocators. In order to avoid
// having an empty base class, we arbitrarily move one of rb_tree's
// data members into the base class.
#ifdef __STL_USE_STD_ALLOCATORS
// _Base for general standard-conforming allocators.
template <class _Tp, class _Alloc, bool _S_instanceless>
class _Rb_tree_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
_Rb_tree_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_header(0) {}
protected:
typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
_M_node_allocator;
_Rb_tree_node<_Tp>* _M_header;
_Rb_tree_node<_Tp>* _M_get_node()
{ return _M_node_allocator.allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _M_node_allocator.deallocate(__p, 1); }
};
// Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rb_tree_alloc_base(const allocator_type&) : _M_header(0) {}
protected:
_Rb_tree_node<_Tp>* _M_header;
typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
_Alloc_type;
_Rb_tree_node<_Tp>* _M_get_node()
{ return _Alloc_type::allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, 1); }
};
template <class _Tp, class _Alloc>
struct _Rb_tree_base
: public _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Rb_tree_base(const allocator_type& __a)
: _Base(__a) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); }
};
#else /* __STL_USE_STD_ALLOCATORS */
template <class _Tp, class _Alloc>
struct _Rb_tree_base
{
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rb_tree_base(const allocator_type&)
: _M_header(0) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); }
protected:
_Rb_tree_node<_Tp>* _M_header; //在基类中定义的header,这是一个实现上的技巧
typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type; //每次可恰恰配置一个节点
//RB-tree的构造方式有两种,一种是以现有的RB-tree复制一个新的RB-tree
_Rb_tree_node<_Tp>* _M_get_node() //另一种是产生一棵空空如也的树
{ return _Alloc_type::allocate(1); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, 1); }
};
#endif /* __STL_USE_STD_ALLOCATORS */
template <class _Key, class _Value, class _KeyOfValue, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
typedef _Rb_tree_base<_Value, _Alloc> _Base;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef _Rb_tree_node<_Value> _Rb_tree_node;
typedef _Rb_tree_Color_type _Color_type;
public:
typedef _Key key_type;
typedef _Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _Rb_tree_node* _Link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
protected:
#ifdef __STL_USE_NAMESPACES
using _Base::_M_get_node;
using _Base::_M_put_node;
using _Base::_M_header;
#endif /* __STL_USE_NAMESPACES */
protected:
_Link_type _M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node(); //配置空间
__STL_TRY {
construct(&__tmp->_M_value_field, __x); //构造内容
}
__STL_UNWIND(_M_put_node(__tmp));
return __tmp;
}
_Link_type _M_clone_node(_Link_type __x) //复制一个节点的值和颜色
{
_Link_type __tmp = _M_create_node(__x->_M_value_field);
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = 0;
__tmp->_M_right = 0;
return __tmp;
}
void destroy_node(_Link_type __p)
{
destroy(&__p->_M_value_field); //析构内容
_M_put_node(__p); //释放内存
}
protected: //RB-tree只有三个数据表现
size_type _M_node_count; // keeps track of size of tree //追踪记录树的大小(节点数量)
_Compare _M_key_compare; //节点间的键值大小比较准则,应该会是一个函数对象
//一下函数用来方便取得节点x的成员
_Link_type& _M_root() const //取根节点
{ return (_Link_type&) _M_header->_M_parent; }
_Link_type& _M_leftmost() const //取最左边的节点
{ return (_Link_type&) _M_header->_M_left; }
_Link_type& _M_rightmost() const //取最右边的节点
{ return (_Link_type&) _M_header->_M_right; }
static _Link_type& _S_left(_Link_type __x) //取x节点的左子节点
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Link_type __x) //取x节点的右子节点
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Link_type __x) //取x节点的父节点
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Link_type __x) //取x节点的存储的值
{ return __x->_M_value_field; }
static const _Key& _S_key(_Link_type __x) //取x节点的键值
{ return _KeyOfValue()(_S_value(__x)); }
static _Color_type& _S_color(_Link_type __x) //取x节点的颜色
{ return (_Color_type&)(__x->_M_color); }
static _Link_type& _S_left(_Base_ptr __x) //基类指针的成员
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Base_ptr __x)
{ return ((_Link_type)__x)->_M_value_field; }
static const _Key& _S_key(_Base_ptr __x)
{ return _KeyOfValue()(_S_value(_Link_type(__x)));}
static _Color_type& _S_color(_Base_ptr __x)
{ return (_Color_type&)(_Link_type(__x)->_M_color); }
static _Link_type _S_minimum(_Link_type __x) //求极小值,调用基类函数
{ return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); }
static _Link_type _S_maximum(_Link_type __x) //求极大值,调用基类函数
{ return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); }
public:
typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator<iterator, value_type, reference,
difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator, value_type,
const_reference, difference_type>
const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
private:
iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
_Link_type _M_copy(_Link_type __x, _Link_type __p);
void _M_erase(_Link_type __x);
public:
// allocation/deallocation,构造和析构函数
_Rb_tree()
: _Base(allocator_type()), _M_node_count(0), _M_key_compare()
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp)
: _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Compare& __comp, const allocator_type& __a)
: _Base(__a), _M_node_count(0), _M_key_compare(__comp)
{ _M_empty_initialize(); }
_Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
: _Base(__x.get_allocator()),
_M_node_count(0), _M_key_compare(__x._M_key_compare)
{
if (__x._M_root() == 0)
_M_empty_initialize();
else {
_S_color(_M_header) = _S_rb_tree_red;
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
}
_M_node_count = __x._M_node_count;
}
~_Rb_tree() { clear(); }
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);
private:
void _M_empty_initialize() {
_S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from
// __root, in iterator.operator++
_M_root() = 0;
_M_leftmost() = _M_header; //令header的左子节点为自己
_M_rightmost() = _M_header; //令header的右子节点为自己
}
public:
// accessors:
_Compare key_comp() const { return _M_key_compare; }
iterator begin() { return _M_leftmost(); } //红黑树的起头我最左(最小)节点处
const_iterator begin() const { return _M_leftmost(); }
iterator end() { return _M_header; } //RB-tree的终点为header所指处
const_iterator end() const { return _M_header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return _M_node_count == 0; }
size_type size() const { return _M_node_count; }
size_type max_size() const { return size_type(-1); }
void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
__STD::swap(_M_header, __t._M_header);
__STD::swap(_M_node_count, __t._M_node_count);
__STD::swap(_M_key_compare, __t._M_key_compare);
}
public:
// insert/erase
pair<iterator,bool> insert_unique(const value_type& __x);
iterator insert_equal(const value_type& __x);
// 将x插入到RB-tree中,保持节点值独一无二
iterator insert_unique(iterator __position, const value_type& __x);
iterator insert_equal(iterator __position, const value_type& __x); // 将x插入到RB-tree中,允许节点值重复
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void insert_unique(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
void insert_equal(_InputIterator __first, _InputIterator __last);
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const_iterator __first, const_iterator __last);
void insert_unique(const value_type* __first, const value_type* __last);
void insert_equal(const_iterator __first, const_iterator __last);
void insert_equal(const value_type* __first, const value_type* __last);
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator __position);
size_type erase(const key_type& __x);
void erase(iterator __first, iterator __last);
void erase(const key_type* __first, const key_type* __last);
void clear() {
if (_M_node_count != 0) {
_M_erase(_M_root());
_M_leftmost() = _M_header;
_M_root() = 0;
_M_rightmost() = _M_header;
_M_node_count = 0;
}
}
public:
// set operations:
iterator find(const key_type& __x);
const_iterator find(const key_type& __x) const;
size_type count(const key_type& __x) const;
iterator lower_bound(const key_type& __x);
const_iterator lower_bound(const key_type& __x) const;
iterator upper_bound(const key_type& __x);
const_iterator upper_bound(const key_type& __x) const;
pair<iterator,iterator> equal_range(const key_type& __x);
pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;
public:
// Debugging.
bool __rb_verify() const;
};
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator!=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return __y < __x;
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
if (this != &__x) {
// Note that _Key may be a constant type.
clear();
_M_node_count = 0;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == 0) {
_M_root() = 0;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
else {
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
}
}
return *this;
}
template <class _Key, class _Value, class _KeyOfValue, //真正执行插入操作的程序
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc> //参数x为新值插入点,参数y为插入点的父节点,参数v为新值
::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
{
_Link_type __x = (_Link_type) __x_;
_Link_type __y = (_Link_type) __y_;
_Link_type __z;
if (__y == _M_header || __x != 0 || //_M_key_compare是键值比较准则,应该是一个函数对象function object
_M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
__z = _M_create_node(__v); //产生一个新节点
_S_left(__y) = __z; // also makes _M_leftmost() = __z 这使得当y为header时,leftmost() = z
// when __y == _M_header
if (__y == _M_header) {
_M_root() = __z;
_M_rightmost() = __z;
}
else if (__y == _M_leftmost()) //如果y是最左节点
_M_leftmost() = __z; // maintain _M_leftmost() pointing to min node 维护leftmost(),使它永远指向最左节点
}
else {
__z = _M_create_node(__v); //产生一个新节点
_S_right(__y) = __z; //令新节点成为插入节点的父节点y的右子节点
if (__y == _M_rightmost())
_M_rightmost() = __z; // maintain _M_rightmost() pointing to max node 维护rightmost(), 使他永远指向最右节点
}
_S_parent(__z) = __y; //设定新节点的父节点
_S_left(__z) = 0; //设定新节点的左子节点
_S_right(__z) = 0; //设定新节点的右子节点
_Rb_tree_rebalance(__z, _M_header->_M_parent); //新节点的颜色在_Rb_tree_rebalance中设定(并调整),参数一是新增节点,参数二是root
++_M_node_count; //节点数累加
return iterator(__z); //返回一个迭代器指向一个新节点
}
template <class _Key, class _Value, class _KeyOfValue, //插入新值,节点键值允许重复
class _Compare, class _Alloc> //返回一个迭代器,指向一个RB-tree迭代器,指向新增节点
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_equal(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root(); //从根节点开始
while (__x != 0) { //从根节点开始,往下寻找适当的插入点
__y = __x;
__x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ? //遇大则往左,遇小或等于则往右,_KeyOfValue是一个仿生函数
_S_left(__x) : _S_right(__x);
}
return _M_insert(__x, __y, __v); //x为新值插入点,y为插入点的父节点,v为新值
}
template <class _Key, class _Value, class _KeyOfValue, //插入新值,节点不允许重复,若重复则插入无效
class _Compare, class _Alloc> //返回的是一个pair,第一个元素是RB-tree的跌代器,指向新增节点
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
bool> //第二个元素表示插入是否成功
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_unique(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root(); //从根节点开始
bool __comp = true;
while (__x != 0) { //从根节点开始,往下寻找适当的插入点
__y = __x;
__comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)); //v键值是否小于目前节点的键值
__x = __comp ? _S_left(__x) : _S_right(__x); //遇大则往左,遇小或等于则往右
} //离开循环后,y所指就是插入点的父节点(此时它必须为叶节点)
iterator __j = iterator(__y); //令迭代器j指向插入节点的父节点y
if (__comp) //如果离开while是camp为真(表示遇大,将插入于左侧)
if (__j == begin()) //如果插入节点的父节点为最左节点
return pair<iterator,bool>(_M_insert(__x, __y, __v), true); //则返回;x为新值插入点,y为插入点的父节点,v为新值
else //否则插入点的父节点不是最左节点
--__j; //调整j,回头准备测试……
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v))) //新键值不与已存在的节点键值重复,于是安排插入操作
return pair<iterator,bool>(_M_insert(__x, __y, __v), true); //x为新值插入点,y为插入点的父节点,v为新值
return pair<iterator,bool>(__j, false); //否则,新值一定与树中键值重复,那么就不该插入新值
}
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
::insert_unique(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > 0 &&
_M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_unique(__v).first;
} else if (__position._M_node == _M_header) { // end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_unique(__v).first;
} else {
iterator __before = __position;
--__before;
if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
&& _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_unique(__v).first;
}
}
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
::insert_equal(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > 0 &&
!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_equal(__v);
} else if (__position._M_node == _M_header) {// end()
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
return _M_insert(0, _M_rightmost(), __v);
else
return insert_equal(__v);
} else {
iterator __before = __position;
--__before;
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
&& !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
if (_S_right(__before._M_node) == 0)
return _M_insert(0, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_equal(__v);
}
}
#ifdef __STL_MEMBER_TEMPLATES