-
Notifications
You must be signed in to change notification settings - Fork 1
/
library_pyRMT.py
720 lines (572 loc) · 25.6 KB
/
library_pyRMT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
### The following code is reproduced from Gregory Giecold's pyRMT library directly, since the version published on PyPI is not actively maintained.
r"""Python for Random Matrix Theory. This package implements several
cleaning schemes for noisy correlation matrices, including
the optimal shrinkage, rotationally-invariant estimator
to an underlying correlation matrix (as proposed by Joel Bun,
Jean-Philippe Bouchaud, Marc Potters and colleagues).
Such cleaned correlation matrix are known to improve factor-decomposition
via Principal Component Analysis (PCA) and could be of relevance in a variety
of contexts, including computational biology.
Cleaning schemes also result in much improved out-of-sample risk
of Markowitz optimal portfolios, as established over the years
in several papers by Jean-Philippe Bouchaud, Marc Potters and collaborators.
Some cleaning schemes can be easily adapted from the various shrinkage
estimators implemented in the sklearn.covariance module
(see the various publications by O. Ledoit and M. Wolf listed below).
In addition, it might make sense to perform an empirical estimate
of a correlation matrix robust to outliers before proceeding with
the cleaning schemes of the present module. Some of those robust estimates
have been implemented in the sklearn.covariance module as well.
References
----------
* "DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES",
V. A. Marcenko and L. A. Pastur
Mathematics of the USSR-Sbornik, Vol. 1 (4), pp 457-483
* "A well-conditioned estimator for large-dimensional covariance matrices",
O. Ledoit and M. Wolf
Journal of Multivariate Analysis, Vol. 88 (2), pp 365-411
* "Improved estimation of the covariance matrix of stock returns with "
"an application to portfolio selection",
O. Ledoit and M. Wolf
Journal of Empirical Finance, Vol. 10 (5), pp 603-621
* "Financial Applications of Random Matrix Theory: a short review",
J.-P. Bouchaud and M. Potters
arXiv: 0910.1205 [q-fin.ST]
* "Eigenvectors of some large sample covariance matrix ensembles",
O. Ledoit and S. Peche
Probability Theory and Related Fields, Vol. 151 (1), pp 233-264
* "NONLINEAR SHRINKAGE ESTIMATION OF LARGE-DIMENSIONAL COVARIANCE MATRICES",
O. Ledoit and M. Wolf
The Annals of Statistics, Vol. 40 (2), pp 1024-1060
* "Rotational invariant estimator for general noisy matrices",
J. Bun, R. Allez, J.-P. Bouchaud and M. Potters
arXiv: 1502.06736 [cond-mat.stat-mech]
* "Cleaning large Correlation Matrices: tools from Random Matrix Theory",
J. Bun, J.-P. Bouchaud and M. Potters
arXiv: 1610.08104 [cond-mat.stat-mech]
* "Direct Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices (September 2017)",
O. Ledoit and M. Wolf https://ssrn.com/abstract=3047302 or http://dx.doi.org/10.2139/ssrn.3047302
"""
from __future__ import division, print_function
from builtins import reversed
from builtins import map, zip
from collections.abc import MutableSequence, Sequence
import copy
from math import ceil
from numbers import Complex, Integral, Real
import sys
import warnings
import numpy as np
import pandas as pd
from sklearn.covariance import EmpiricalCovariance
from sklearn.preprocessing import StandardScaler
__author__ = 'Gregory Giecold and Lionel Ouaknin'
__copyright__ = 'Copyright 2017-2022 Gregory Giecold and contributors'
__credit__ = 'Gregory Giecold and Lionel Ouaknin'
__status__ = 'beta'
__version__ = '0.1.0'
__all__ = ['clipped', 'directKernel', 'marcenkoPastur',
'optimalShrinkage', 'poolAdjacentViolators',
'stieltjes']
def checkDesignMatrix(X):
"""
Parameters
----------
X: a matrix of shape (T, N), where T denotes the number
of samples and N labels the number of features.
If T < N, a warning is issued to the user, and the transpose
of X is considered instead.
Returns:
T: type int
N: type int
transpose_flag: type bool
Specify if the design matrix X should be transposed
in view of having less rows than columns.
"""
try:
assert isinstance(X, (np.ndarray, pd.DataFrame, pd.Series,
MutableSequence, Sequence))
except AssertionError:
raise
sys.exit(1)
X = np.asarray(X, dtype=float)
X = np.atleast_2d(X)
if X.shape[0] < X.shape[1]:
warnings.warn("The Marcenko-Pastur distribution pertains to "
"the empirical covariance matrix of a random matrix X "
"of shape (T, N). It is assumed that the number of "
"samples T is assumed higher than the number of "
"features N. The transpose of the matrix X submitted "
"at input will be considered in the cleaning schemes "
"for the corresponding correlation matrix.", UserWarning)
T, N = reversed(X.shape)
transpose_flag = True
else:
T, N = X.shape
transpose_flag = False
return T, N, transpose_flag
def marcenkoPastur(X):
"""
Parameter
---------
X: random matrix of shape (T, N), with T denoting the number
of samples, whereas N refers to the number of features.
It is assumed that the variance of the elements of X
has been normalized to unity.
Returns
-------
(lambda_min, lambda_max): type tuple
Bounds to the support of the Marcenko-Pastur distribution
associated to random matrix X.
rho: type function
The Marcenko-Pastur density.
Reference
---------
"DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES",
V. A. Marcenko and L. A. Pastur
Mathematics of the USSR-Sbornik, Vol. 1 (4), pp 457-483
"""
T, N, _ = checkDesignMatrix(X)
q = N / float(T)
lambda_min = (1 - np.sqrt(q))**2
lambda_max = (1 + np.sqrt(q))**2
def rho(x):
ret = np.sqrt((lambda_max - x) * (x - lambda_min))
ret /= 2 * np.pi * q * x
return ret if lambda_min < x < lambda_max else 0.0
return (lambda_min, lambda_max), rho
def clipped(X, alpha=None, return_covariance=False):
"""Clips the eigenvalues of an empirical correlation matrix E
in order to provide a cleaned estimator E_clipped of the
underlying correlation matrix.
Proceeds by keeping the [N * alpha] top eigenvalues and shrinking
the remaining ones by a trace-preserving constant
(i.e. Tr(E_clipped) = Tr(E)).
Parameters
----------
X: design matrix, of shape (T, N), where T denotes the number
of samples (think measurements in a time series), while N
stands for the number of features (think of stock tickers).
alpha: type float or derived from numbers.Real (default: None)
Parameter between 0 and 1, inclusive, determining the fraction
to keep of the top eigenvalues of an empirical correlation matrix.
If left unspecified, alpha is chosen so as to keep all the
empirical eigenvalues greater than the upper limit of
the support to the Marcenko-Pastur spectrum. Indeed, such
eigenvalues can be considered as associated with some signal,
whereas the ones falling inside the Marcenko-Pastur range
should be considered as corrupted with noise and indistinguishable
from the spectrum of the correlation of a random matrix.
This ignores finite-size effects that make it possible
for the eigenvalues to exceed the upper and lower edges
defined by the Marcenko-Pastur spectrum (cf. a set of results
revolving around the Tracy-Widom distribution)
return_covariance: type bool (default: False)
If set to True, compute the standard deviations of each individual
feature across observations, clean the underlying matrix
of pairwise correlations, then re-apply the standard
deviations and return a cleaned variance-covariance matrix.
Returns
-------
E_clipped: type numpy.ndarray, shape (N, N)
Cleaned estimator of the true correlation matrix C underlying
a noisy, in-sample estimate E (empirical correlation matrix
estimated from X). This cleaned estimator proceeds through
a simple eigenvalue clipping procedure (cf. reference below).
If return_covariance=True, E_clipped corresponds to a cleaned
variance-covariance matrix.
Reference
---------
"Financial Applications of Random Matrix Theory: a short review",
J.-P. Bouchaud and M. Potters
arXiv: 0910.1205 [q-fin.ST]
"""
try:
if alpha is not None:
assert isinstance(alpha, Real) and 0 <= alpha <= 1
assert isinstance(return_covariance, bool)
except AssertionError:
raise
sys.exit(1)
T, N, transpose_flag = checkDesignMatrix(X)
if transpose_flag:
X = X.T
if not return_covariance:
X = StandardScaler(with_mean=False,
with_std=True).fit_transform(X)
ec = EmpiricalCovariance(store_precision=False,
assume_centered=True)
ec.fit(X)
E = ec.covariance_
if return_covariance:
inverse_std = 1./np.sqrt(np.diag(E))
E *= inverse_std
E *= inverse_std.reshape(-1, 1)
eigvals, eigvecs = np.linalg.eigh(E)
eigvecs = eigvecs.T
if alpha is None:
(lambda_min, lambda_max), _ = marcenkoPastur(X)
xi_clipped = np.where(eigvals >= lambda_max, eigvals, np.nan)
else:
xi_clipped = np.full(N, np.nan)
threshold = int(ceil(alpha * N))
if threshold > 0:
xi_clipped[-threshold:] = eigvals[-threshold:]
gamma = float(E.trace() - np.nansum(xi_clipped))
gamma /= np.isnan(xi_clipped).sum()
xi_clipped = np.where(np.isnan(xi_clipped), gamma, xi_clipped)
E_clipped = np.zeros((N, N), dtype=float)
for xi, eigvec in zip(xi_clipped, eigvecs):
eigvec = eigvec.reshape(-1, 1)
E_clipped += xi * eigvec.dot(eigvec.T)
tmp = 1./np.sqrt(np.diag(E_clipped))
E_clipped *= tmp
E_clipped *= tmp.reshape(-1, 1)
if return_covariance:
std = 1./inverse_std
E_clipped *= std
E_clipped *= std.reshape(-1, 1)
return E_clipped
def stieltjes(z, E):
"""
Parameters
----------
z: complex number
E: square matrix
Returns
-------
A complex number, the resolvent of square matrix E,
also known as its Stieltjes transform.
Reference
---------
"Financial Applications of Random Matrix Theory: a short review",
J.-P. Bouchaud and M. Potters
arXiv: 0910.1205 [q-fin.ST]
"""
try:
assert isinstance(z, Complex)
assert isinstance(E, (np.ndarray, pd.DataFrame,
MutableSequence, Sequence))
E = np.asarray(E, dtype=float)
E = np.atleast_2d(E)
assert E.shape[0] == E.shape[1]
except AssertionError:
raise
sys.exit(1)
N = E.shape[0]
ret = z * np.eye(N, dtype=float) - E
ret = np.trace(ret) / N
return ret
def xiHelper(x, q, E):
"""Helper function to the rotationally-invariant, optimal shrinkage
estimator of the true correlation matrix (implemented via function
optimalShrinkage of the present module).
Parameters
----------
x: type derived from numbers.Real
Would typically be expected to be an eigenvalue from the
spectrum of correlation matrix E. The present function
can however handle an arbitrary floating-point number.
q: type derived from numbers.Real
The number parametrizing a Marcenko-Pastur spectrum.
E: type numpy.ndarray
Symmetric correlation matrix associated with the
Marcenko-Pastur parameter q specified above.
Returns
-------
xi: type float
Cleaned eigenvalue of the true correlation matrix C underlying
the empirical correlation E (the latter being corrupted
with in-sample noise). This cleaned version is computed
assuming no prior knowledge on the structure of the true
eigenvectors (thereby leaving the eigenvectors of E unscathed).
References
----------
* "Rotational invariant estimator for general noisy matrices",
J. Bun, R. Allez, J.-P. Bouchaud and M. Potters
arXiv: 1502.06736 [cond-mat.stat-mech]
* "Cleaning large Correlation Matrices: tools from Random Matrix Theory",
J. Bun, J.-P. Bouchaud and M. Potters
arXiv: 1610.08104 [cond-mat.stat-mech]
"""
try:
assert isinstance(x, Real)
assert isinstance(q, Real)
assert isinstance(E, np.ndarray) and E.shape[0] == E.shape[1]
assert np.allclose(E.transpose(1, 0), E)
except AssertionError:
raise
sys.exit(1)
N = E.shape[0]
z = x - 1j / np.sqrt(N)
s = stieltjes(z, E)
xi = x / abs(1 - q + q * z * s)**2
return xi
def gammaHelper(x, q, N, lambda_N, inverse_wishart=False):
"""Helper function to optimalShrinkage function defined below.
The eigenvalue to the cleaned estimator of a true correlation
matrix are computed via the function xiHelper defined above in
the module at hand.
It is known however that when N is not very large
a systematic downward bias affects the xiHelper estimator for small
eigenvalues of the noisy empirical correlation matrix. This bias
can be heuristically corrected by computing
xi_hat = xi_RIE * max(1, Gamma),
with Gamma evaluated by the function gammaHelper herewith.
Parameters
----------
x: type float or any other type derived from numbers.Real
Typically an eigenvalue from the spectrum of a sample
estimate of the correlation matrix associated to some
design matrix X. However, the present function supports
any arbitrary floating-point number x at input.
q: type derived from numbers.Real
Parametrizes a Marcenko-Pastur spectrum.
N: type derived from numbers.Integral
Dimension of a correlation matrix whose debiased,
rotationally-invariant estimator is to be assessed via
the function RIE (see below), of which the present function
is a helper.
lambda_N: type derived from numbers.Real
Smallest eigenvalue from the spectrum of an empirical
estimate to a correlation matrix.
inverse_wishart: type bool default: False
Wether to use inverse wishart regularization
Returns
------
Gamma: type float
Upward correction factor for computing a debiased
rotationally-invariant estimator of a true underlying
correlation matrix.
Reference
---------
"Cleaning large Correlation Matrices: tools from Random Matrix Theory",
J. Bun, J.-P. Bouchaud and M. Potters
arXiv: 1610.08104 [cond-mat.stat-mech]
"""
try:
assert isinstance(x, Real)
assert isinstance(q, Real)
assert isinstance(N, Integral)
assert isinstance(lambda_N, Real)
except AssertionError:
raise
sys.exit(1)
z = x - 1j / np.sqrt(N)
lambda_plus = (1 + np.sqrt(q))**2
lambda_plus /= (1 - np.sqrt(q))**2
lambda_plus *= lambda_N
sigma_2 = lambda_N / (1 - np.sqrt(q))**2
# gmp defined below stands for the Stieltjes transform of the
# rescaled Marcenko-Pastur density, evaluated at z
gmp = z + sigma_2 * (q - 1) - np.sqrt((z - lambda_N) * (z - lambda_plus))
gmp /= 2 * q * sigma_2 * z
Gamma = abs(1 - q + q * z * gmp)**2
Gamma *= sigma_2
if inverse_wishart:
kappa = 2 * lambda_N / ((1 - q - lambda_N) ** 2 - 4 * q * lambda_N)
alpha_s = 1 / (1 + 2 * q * kappa)
denom = x / (1 + alpha_s * (x - 1.))
Gamma /= denom
else:
Gamma /= x
return Gamma
def optimalShrinkage(X, return_covariance=False, method='rie'):
"""This function computes a cleaned, optimal shrinkage,
rotationally-invariant estimator (RIE) of the true correlation
matrix C underlying the noisy, in-sample estimate
E = 1/T X * transpose(X)
associated to a design matrix X of shape (T, N) (T measurements
and N features).
One approach to getting a cleaned estimator that predates the
optimal shrinkage, RIE estimator consists in inverting the
Marcenko-Pastur equation so as to replace the eigenvalues
from the spectrum of E by an estimation of the true ones.
This approach is known to be numerically-unstable, in addition
to failing to account for the overlap between the sample eigenvectors
and the true eigenvectors. How to compute such overlaps was first
explained by Ledoit and Peche (cf. reference below). Their procedure
was extended by Bun, Bouchaud and Potters, who also correct
for a systematic downward bias in small eigenvalues.
It is this debiased, optimal shrinkage, rotationally-invariant
estimator that the function at hand implements.
In addition to above method, this funtion also provides access to:
- The finite N regularization of the optimal RIE for small eigenvalues
as provided in section 8.1 of [3] a.k.a the inverse wishart (IW) regularization.
- The direct kernel method of O. Ledoit and M. Wolf in their 2017 paper [4].
This is a direct port of their Matlab code.
Parameters
----------
X: design matrix, of shape (T, N), where T denotes the number
of samples (think measurements in a time series), while N
stands for the number of features (think of stock tickers).
return_covariance: type bool (default: False)
If set to True, compute the standard deviations of each individual
feature across observations, clean the underlying matrix
of pairwise correlations, then re-apply the standard
deviations and return a cleaned variance-covariance matrix.
method: type string, optional (default="rie")
- If "rie" : optimal shrinkage in the manner of Bun & al.
with no regularisation
- If "iw" : optimal shrinkage in the manner of Bun & al.
with the so called Inverse Wishart regularization
- If 'kernel': Direct kernel method of Ledoit Wolf.
Returns
-------
E_RIE: type numpy.ndarray, shape (N, N)
Cleaned estimator of the true correlation matrix C. A sample
estimator of C is the empirical covariance matrix E
estimated from X. E is corrupted by in-sample noise.
E_RIE is the optimal shrinkage, rotationally-invariant estimator
(RIE) of C computed following the procedure of Joel Bun
and colleagues (cf. references below).
If return_covariance=True, E_clipped corresponds to a cleaned
variance-covariance matrix.
References
----------
1 "Eigenvectors of some large sample covariance matrix ensembles",
O. Ledoit and S. Peche
Probability Theory and Related Fields, Vol. 151 (1), pp 233-264
2 "Rotational invariant estimator for general noisy matrices",
J. Bun, R. Allez, J.-P. Bouchaud and M. Potters
arXiv: 1502.06736 [cond-mat.stat-mech]
3 "Cleaning large Correlation Matrices: tools from Random Matrix Theory",
J. Bun, J.-P. Bouchaud and M. Potters
arXiv: 1610.08104 [cond-mat.stat-mech]
4 "Direct Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices (September 2017)",
O. Ledoit and M. Wolf https://ssrn.com/abstract=3047302 or http://dx.doi.org/10.2139/ssrn.3047302
"""
try:
assert isinstance(return_covariance, bool)
except AssertionError:
raise
sys.exit(1)
T, N, transpose_flag = checkDesignMatrix(X)
if transpose_flag:
X = X.T
if not return_covariance:
X = StandardScaler(with_mean=False,
with_std=True).fit_transform(X)
ec = EmpiricalCovariance(store_precision=False,
assume_centered=True)
ec.fit(X)
E = ec.covariance_
if return_covariance:
inverse_std = 1./np.sqrt(np.diag(E))
E *= inverse_std
E *= inverse_std.reshape(-1, 1)
eigvals, eigvecs = np.linalg.eigh(E)
eigvecs = eigvecs.T
q = N / float(T)
lambda_N = eigvals[0] # The smallest empirical eigenvalue,
# given that the function used to compute
# the spectrum of a Hermitian or symmetric
# matrix - namely np.linalg.eigh - returns
# the eigenvalues in ascending order.
lambda_hats = None
if method != 'kernel':
use_inverse_wishart = (method == 'iw')
xis = map(lambda x: xiHelper(x, q, E), eigvals)
Gammas = map(lambda x: gammaHelper(x, q, N, lambda_N, inverse_wishart=use_inverse_wishart), eigvals)
xi_hats = map(lambda a, b: a * b if b > 1 else a, xis, Gammas)
lambda_hats = xi_hats
else:
lambda_hats = directKernel(q, T, N, eigvals)
E_RIE = np.zeros((N, N), dtype=float)
for lambda_hat, eigvec in zip(lambda_hats, eigvecs):
eigvec = eigvec.reshape(-1, 1)
E_RIE += lambda_hat * eigvec.dot(eigvec.T)
tmp = 1./np.sqrt(np.diag(E_RIE))
E_RIE *= tmp
E_RIE *= tmp.reshape(-1, 1)
if return_covariance:
std = 1./inverse_std
E_RIE *= std
E_RIE *= std.reshape(-1, 1)
return E_RIE
def directKernel(q, T, N, eigvals):
"""This function computes a non linear shrinkage estimator of a covariance marix
based on the spectral distribution of its eigenvalues and that of its Hilbert Tranform.
This is an extension of Ledoit & Péché(2011).
This is a port of the Matlab code provided by O. Ledoit and M .Wolf. This port
uses the Pool Adjacent Violators (PAV) algorithm by Alexandre Gramfort
(EMAP toolbox). See below for a Python implementation of PAV.
Parameters
----------
q: type derived from numbers.Real
Ratio of N/T
T: type derived from numbers.Integral
Number of samples
N: type derived from numbers.Integral
Dimension of a correlation matrix
eigvals: Vector of the covariance matrix eigenvalues
Returns
-------
dhats: A vector of eigenvalues estimates
References
----------
* "Eigenvectors of some large sample covariance matrix ensembles",
O. Ledoit and S. Peche (2011)
* "Direct Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices (September 2017)",
O. Ledoit and M. Wolf https://ssrn.com/abstract=3047302 or http://dx.doi.org/10.2139/ssrn.3047302
"""
# compute direct kernel estimator
lambdas = eigvals[max(0, N - T):].T # transpose to have a column vector
h = np.power(T, -0.35) # Equation (5.4)
h_squared = h ** 2
L = np.matlib.repmat(lambdas, N, 1).T
Lt = L.transpose()
square_Lt = h_squared * (Lt ** 2)
zeros = np.zeros((N, N))
tmp = np.sqrt(np.maximum(4 * square_Lt - (L - Lt) ** 2, zeros)) / (2 * np.pi * square_Lt)
f_tilde = np.mean(tmp, axis=0) # Equation (5.2)
tmp = np.sign(L - Lt) * np.sqrt(np.maximum((L - Lt) ** 2 - 4 * square_Lt, zeros)) - L + Lt
tmp /= 2 * np.pi * square_Lt
Hf_tilde = np.mean(tmp, axis=1) # Equation (5.3)
if N <= T:
tmp = (np.pi * q * lambdas * f_tilde) ** 2
tmp += (1 - q - np.pi * q * lambdas * Hf_tilde) ** 2
d_tilde = lambdas / tmp # Equation (4.3)
else:
Hf_tilde_0 = (1 - np.sqrt(1 - 4 * h_squared)) / (2 * np.pi * h_squared) * np.mean(1. / lambdas) # Equation (C.8)
d_tilde_0 = 1 / (np.pi * (N - T) / T * Hf_tilde_0) # Equation (C.5)
d_tilde_1 = lambdas / ((np.pi ** 2) * (lambdas ** 2) * (f_tilde ** 2 + Hf_tilde ** 2)) # Equation (C.4)
d_tilde = np.concatenate(np.dot(d_tilde_0, np.ones(N - T, 1, np.float)), d_tilde_1)
d_hats = poolAdjacentViolators(d_tilde) # Equation (4.5)
return d_hats
# Author : Alexandre Gramfort
# license : BSD
def poolAdjacentViolators(y):
"""
PAV uses the pool adjacent violators method to produce a monotonic smoothing of y.
Translated from matlab by Sean Collins (2006), and part of the EMAP toolbox.
"""
y = np.asarray(y)
try:
assert y.ndim == 1
except AssertionError:
raise
sys.exit(1)
n_samples = len(y)
v = y.copy()
lvls = np.arange(n_samples)
lvlsets = np.c_[lvls, lvls]
while True:
deriv = np.diff(v)
if np.all(deriv >= 0):
break
violator = np.where(deriv < 0)[0]
start = lvlsets[violator[0], 0]
last = lvlsets[violator[0] + 1, 1]
s = 0
n = last - start + 1
for i in range(start, last + 1):
s += v[i]
val = s / n
for i in range(start, last + 1):
v[i] = val
lvlsets[i, 0] = start
lvlsets[i, 1] = last
return v
if __name__ == '__main__':
pass