-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_question_answering.py
754 lines (649 loc) · 34 KB
/
run_question_answering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library's seq2seq models for question answering using the 🤗 Seq2SeqTrainer.
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.
TESTING = True
from dataclasses import dataclass, field
from typing import List, Optional, Tuple
import logging
import os
import sys
import nltk
import numpy as np
from copy import deepcopy
from sklearn.metrics import f1_score
import seaborn as sns
import pandas as pd
import copy
import datasets
import evaluate
import transformers
from datasets import load_dataset
from peft import LoraConfig, TaskType, get_peft_model, PeftModel
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
from transformers.utils.versions import require_version
from qa_lib import (
ModelArguments,
DataTrainingArguments,
QATrainer,
adjust_training_args,
)
from models import (
T5ForConditionalGeneration,
DeployT5ForConditionalGeneration,
)
from util import (
AdditionalArguments,
update_autoconfig,
)
import wandb
import matplotlib.pyplot as plt
logger = logging.getLogger(__name__)
question_answering_column_name_mapping = {
"squad": ("question", "context", "answer"),
"squad_v2": ("question", "context", "answer"),
"narrativeqa": ("question", "document", "answer")
}
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def main(model_args, data_args, training_args, additional_args, model_cls, trainer_cls, jupyter=False):
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_seq2seq_qa", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
model_args
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
field="data",
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if not additional_args.use_lora or training_args.do_train:
config_name = model_args.config_name if model_args.config_name else model_args.model_name_or_path
tokenizer_name = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
model_name = model_args.model_name_or_path
else:
lora_config = LoraConfig.from_pretrained(model_args.model_name_or_path)
config_name = tokenizer_name = model_name = lora_config.base_model_name_or_path
config = AutoConfig.from_pretrained(
config_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
config = update_autoconfig(
config,
additional_args,
max_answer_length=data_args.max_answer_length,
)
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = model_cls.from_pretrained(
model_name,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
if additional_args.use_lora:
if training_args.do_train:
lora_config = LoraConfig(
task_type=TaskType.SEQ_2_SEQ_LM, r=additional_args.lora_rank,
lora_alpha=additional_args.lora_alpha, lora_dropout=additional_args.lora_dropout,
target_modules=additional_args.lora_target_modules,
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
else:
model = PeftModel.from_pretrained(model, model_args.model_name_or_path, config=lora_config)
model = model.merge_and_unload()
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
# Preprocessing the datasets.
# We need to generate and tokenize inputs and targets.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
column_names = raw_datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
dataset_columns = question_answering_column_name_mapping.get(data_args.dataset_name, None)
if data_args.question_column is None:
question_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
question_column = data_args.question_column
if question_column not in column_names:
raise ValueError(
f"--question_column' value '{data_args.question_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.context_column is None:
context_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
context_column = data_args.context_column
if context_column not in column_names:
raise ValueError(
f"--context_column' value '{data_args.context_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.answer_column is None:
answer_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
else:
answer_column = data_args.answer_column
if answer_column not in column_names:
raise ValueError(
f"--answer_column' value '{data_args.answer_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_answer_length for training.
max_answer_length = data_args.max_answer_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_squad_batch(
examples,
question_column: str,
context_column: str,
answer_column: str,
) -> Tuple[List[str], List[str]]:
questions = examples[question_column]
contexts = examples[context_column]
answers = examples[answer_column]
def generate_input(_question, _context):
return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()])
inputs = [generate_input(question, context) for question, context in zip(questions, contexts)]
targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers]
return inputs, targets
def preprocess_narrativeqa_batch(
examples,
question_column: str,
context_column: str,
answer_column: str,
) -> Tuple[List[str], List[str]]:
questions = examples[question_column]
contexts = [e['summary']['text'] for e in examples[context_column]]
answers = examples[answer_column]
def generate_input(_question, _context):
return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()])
inputs = [generate_input(question['text'], context) for question, context in zip(questions, contexts)]
targets = [answer[0]["text"] if len(answer) > 0 else "" for answer in answers]
return inputs, targets
def preprocess_function(examples):
if "squad" in data_args.dataset_name:
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
elif data_args.dataset_name == "narrativeqa":
inputs, targets = preprocess_narrativeqa_batch(examples, question_column, context_column, answer_column)
else:
raise NotImplementedError
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
# Tokenize targets with text_target=...
labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# Validation preprocessing
def preprocess_validation_function(examples):
if "squad" in data_args.dataset_name:
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True,
return_overflowing_tokens=True, return_offsets_mapping=True,)
elif data_args.dataset_name == "narrativeqa":
inputs, targets = preprocess_narrativeqa_batch(examples, question_column, context_column, answer_column)
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
else:
raise NotImplementedError
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(text_target=targets, max_length=max_answer_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
if "squad" in data_args.dataset_name:
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = model_inputs.pop("overflow_to_sample_mapping")
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
model_inputs["example_id"] = []
# Augment the overflowing tokens to the labels
labels_out = []
for i in range(len(model_inputs["input_ids"])):
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
model_inputs["example_id"].append(examples["id"][sample_index])
labels_out.append(labels["input_ids"][sample_index])
model_inputs["labels"] = labels_out
elif data_args.dataset_name == "narrativeqa":
model_inputs["labels"] = labels["input_ids"]
else:
raise NotImplementedError
return model_inputs
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
# We will select sample from whole data if agument is specified
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
# Create train feature from dataset
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if data_args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_examples = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
# We will select sample from whole data
max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
eval_examples = eval_examples.select(range(max_eval_samples))
# Validation Feature Creation
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_examples.map(
preprocess_validation_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if data_args.max_eval_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
if training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_examples = raw_datasets["test"]
if data_args.max_predict_samples is not None:
# We will select sample from whole data
predict_examples = predict_examples.select(range(data_args.max_predict_samples))
# Predict Feature Creation
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_examples.map(
preprocess_validation_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if data_args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
if data_args.dataset_name == "narrativeqa":
metric = evaluate.load("rouge")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
try:
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
except:
decoded_preds = tokenizer.batch_decode(np.where(preds != -100, preds, tokenizer.pad_token_id),
skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
try:
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
except:
decoded_labels = tokenizer.batch_decode(np.where(labels != -100, labels, tokenizer.pad_token_id),
skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
elif "squad" in data_args.dataset_name:
metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad")
def compute_metrics(p: EvalPrediction, prefix: str = None):
metric_dict = metric.compute(predictions=p.predictions, references=p.label_ids)
metric_keys = deepcopy(list(metric_dict.keys()))
for key in metric_keys:
if prefix is not None and prefix not in key:
metric_dict['{}_{}'.format(prefix, key)] = metric_dict.pop(key)
return metric_dict
else:
raise NotImplementedError
# Post-processing:
def post_processing_function(
examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"
):
# Decode the predicted tokens.
preds = outputs.predictions
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}
predictions = {}
task_name = "squad_v2" if data_args.version_2_with_negative else "squad"
# Let's loop over all the examples!
for example_index, example in enumerate(examples):
# This is the index of the feature associated to the current example.
try:
feature_index = feature_per_example[example_index]
predictions[example["id"]] = decoded_preds[feature_index]
except:
predictions[example["id"]] = "fail"
# Format the result to the format the metric expects.
if data_args.version_2_with_negative:
formatted_predictions = [
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
]
else:
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
# adjust training arguments
training_args = adjust_training_args(training_args, data_args, additional_args)
trainer = trainer_cls(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
eval_examples=eval_examples if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics, # if training_args.predict_with_generate else None,
post_process_function=post_processing_function if "squad" in data_args.dataset_name else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
if not additional_args.use_lora: trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if additional_args.use_lora:
model.save_pretrained(training_args.output_dir) # save adapter_config.json
model.base_model.save_pretrained(training_args.output_dir) # save config.json
# Evaluation
results = {}
max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.val_max_answer_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
if training_args.do_eval:
logger.info("*** Evaluate ***")
# evaluation metrics could be differ from evaluation during training
# refer to https://discuss.huggingface.co/t/evaluation-results-metric-during-training-is-different-from-the-evaluation-results-at-the-end/15401/3
if training_args.include_inputs_for_metrics:
output = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval", render_jsds=additional_args.render_jsds)
metrics = output.metrics
if additional_args.count_flops:
final_flops = model.decoder.flop_counter/len(eval_dataset)
print(f"Average FLOPS: {final_flops}")
else:
metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval")
if additional_args.plotting_logits:
data = model.decoder.graph_top_k_list
data_conf = model.decoder.graph_top_k_confidence
max_length = max(len(arr) for arr in data)
# Pad arrays with NaNs to ensure they are all the same length
padded_data = [np.pad(np.array(arr, dtype=float), # Convert array to float
(0, max_length - len(arr)),
mode='constant',
constant_values=np.nan)
for arr in data]
padded_conf = [np.pad(np.array(arr, dtype=float), # Convert array to float
(0, max_length - len(arr)),
mode='constant',
constant_values=np.nan)
for arr in data_conf]
# Convert the list of arrays into a single NumPy array
padded_array = np.array(padded_data)
padded_conf_array = np.array(padded_conf)
# Converting the array to a DataFrame for easier handling in seaborn
df = pd.DataFrame(padded_array)
# Creating a boxplot
plt.figure(figsize=(12, 8))
sns.boxplot(data=df)
plt.title('Rank of the final predicted token at each layer', fontsize=20)
plt.xlabel('Layer', fontsize=16)
plt.ylabel('Rank of the final predicted token', fontsize=16)
plt.grid(True)
plt.savefig("plots/boxplot_topk_rank_eval" + data_args.dataset_name.replace("/","_") + "_" + model_args.model_name_or_path.replace("/","_") +".png")
# Compute the mean of the first column
mean_conf_block = np.nanmean(padded_conf_array, axis=0)
return mean_conf_block
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***")
results = trainer.predict(predict_dataset, predict_examples)
metrics = results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if training_args.push_to_hub:
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
trainer.push_to_hub(**kwargs)
if not jupyter:
return results, metrics
else:
return trainer, metrics
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
#os.environ["WANDB_DISABLED"] = "true"
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, AdditionalArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args, additional_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args, additional_args = parser.parse_args_into_dataclasses()
if data_args.dataset_name in ["squad", "squad_v2", "narrativeqa"]:
model_cls = T5ForConditionalGeneration if not additional_args.deploy_scenario \
else DeployT5ForConditionalGeneration
trainer_cls = QATrainer
training_args.include_inputs_for_metrics = True
if not additional_args.plotting_logits:
main(model_args, data_args, training_args, additional_args, model_cls, trainer_cls)
else:
mean_block_confidence = main(model_args, data_args, training_args, additional_args, model_cls, trainer_cls)
block_k_metric = []
additional_args.plotting_logits = False
for block in range(1, 25):
additional_args.static_exit_layer = block
_, metrics = main(model_args, data_args, training_args, additional_args, model_cls, trainer_cls)
block_k_metric.append(metrics["eval_f1"]/100)
plt.figure(figsize=(10, 6))
plt.plot(np.arange(24), mean_block_confidence, label='Confidence', color='midnightblue', linestyle='dashed')
plt.plot(np.arange(24), block_k_metric, label='F1', color='red')
plt.title('Confidence vs F1 over layers')
plt.xlabel('Layer')
plt.ylabel('Confidence/F1 Score')
plt.legend()
plt.grid(True)
plt.savefig("plots/conf_metric_blocks" + data_args.dataset_name.replace("/","_") + "_" + model_args.model_name_or_path.replace("/","_") + ".png")