forked from parithoshpoojary/java-algorithms-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAVLTree.java
376 lines (333 loc) · 12.7 KB
/
AVLTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
package com.jwetherell.algorithms.data_structures;
import java.util.ArrayList;
import java.util.List;
/**
* An AVL tree is a self-balancing binary search tree, and it was the first such
* data structure to be invented. In an AVL tree, the heights of the two child
* subtrees of any node differ by at most one. AVL trees are often compared with
* red-black trees because they support the same set of operations and because
* red-black trees also take O(log n) time for the basic operations. Because AVL
* trees are more rigidly balanced, they are faster than red-black trees for
* lookup intensive applications. However, red-black trees are faster for
* insertion and removal.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/AVL_tree">AVL Tree (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
public class AVLTree<T extends Comparable<T>> extends BinarySearchTree<T> {
private enum Balance {
LEFT_LEFT, LEFT_RIGHT, RIGHT_LEFT, RIGHT_RIGHT
}
/**
* Default constructor.
*/
public AVLTree() {
this.creator = new BinarySearchTree.INodeCreator<T>() {
/**
* {@inheritDoc}
*/
@Override
public BinarySearchTree.Node<T> createNewNode(BinarySearchTree.Node<T> parent, T id) {
return (new AVLNode<T>(parent, id));
}
};
}
/**
* Constructor with external Node creator.
*/
public AVLTree(INodeCreator<T> creator) {
super(creator);
}
/**
* {@inheritDoc}
*/
@Override
protected Node<T> addValue(T id) {
Node<T> nodeToReturn = super.addValue(id);
AVLNode<T> nodeAdded = (AVLNode<T>) nodeToReturn;
nodeAdded.updateHeight();
balanceAfterInsert(nodeAdded);
nodeAdded = (AVLNode<T>) nodeAdded.parent;
while (nodeAdded != null) {
int h1 = nodeAdded.height;
nodeAdded.updateHeight();
balanceAfterInsert(nodeAdded);
// If height before and after balance is the same, stop going up the tree
int h2 = nodeAdded.height;
if (h1==h2)
break;
nodeAdded = (AVLNode<T>) nodeAdded.parent;
}
return nodeToReturn;
}
/**
* Balance the tree according to the AVL post-insert algorithm.
*
* @param node
* Root of tree to balance.
*/
private void balanceAfterInsert(AVLNode<T> node) {
int balanceFactor = node.getBalanceFactor();
if (balanceFactor > 1 || balanceFactor < -1) {
AVLNode<T> child = null;
Balance balance = null;
if (balanceFactor < 0) {
child = (AVLNode<T>) node.lesser;
balanceFactor = child.getBalanceFactor();
if (balanceFactor < 0)
balance = Balance.LEFT_LEFT;
else
balance = Balance.LEFT_RIGHT;
} else {
child = (AVLNode<T>) node.greater;
balanceFactor = child.getBalanceFactor();
if (balanceFactor < 0)
balance = Balance.RIGHT_LEFT;
else
balance = Balance.RIGHT_RIGHT;
}
if (balance == Balance.LEFT_RIGHT) {
// Left-Right (Left rotation, right rotation)
rotateLeft(child);
rotateRight(node);
} else if (balance == Balance.RIGHT_LEFT) {
// Right-Left (Right rotation, left rotation)
rotateRight(child);
rotateLeft(node);
} else if (balance == Balance.LEFT_LEFT) {
// Left-Left (Right rotation)
rotateRight(node);
} else {
// Right-Right (Left rotation)
rotateLeft(node);
}
child.updateHeight();
node.updateHeight();
}
}
/**
* {@inheritDoc}
*/
@Override
protected Node<T> removeValue(T value) {
// Find node to remove
Node<T> nodeToRemoved = this.getNode(value);
if (nodeToRemoved==null)
return null;
// Find the replacement node
Node<T> replacementNode = this.getReplacementNode(nodeToRemoved);
// Find the parent of the replacement node to re-factor the height/balance of the tree
AVLNode<T> nodeToRefactor = null;
if (replacementNode != null)
nodeToRefactor = (AVLNode<T>) replacementNode.parent;
if (nodeToRefactor == null)
nodeToRefactor = (AVLNode<T>) nodeToRemoved.parent;
if (nodeToRefactor != null && nodeToRefactor == nodeToRemoved)
nodeToRefactor = (AVLNode<T>) replacementNode;
// Replace the node
replaceNodeWithNode(nodeToRemoved, replacementNode);
// Re-balance the tree all the way up the tree
while (nodeToRefactor != null) {
nodeToRefactor.updateHeight();
balanceAfterDelete(nodeToRefactor);
nodeToRefactor = (AVLNode<T>) nodeToRefactor.parent;
}
return nodeToRemoved;
}
/**
* Balance the tree according to the AVL post-delete algorithm.
*
* @param node
* Root of tree to balance.
*/
private void balanceAfterDelete(AVLNode<T> node) {
int balanceFactor = node.getBalanceFactor();
if (balanceFactor == -2 || balanceFactor == 2) {
if (balanceFactor == -2) {
AVLNode<T> ll = (AVLNode<T>) node.lesser.lesser;
int lesser = (ll != null) ? ll.height : 0;
AVLNode<T> lr = (AVLNode<T>) node.lesser.greater;
int greater = (lr != null) ? lr.height : 0;
if (lesser >= greater) {
rotateRight(node);
node.updateHeight();
if (node.parent != null)
((AVLNode<T>) node.parent).updateHeight();
} else {
rotateLeft(node.lesser);
rotateRight(node);
AVLNode<T> p = (AVLNode<T>) node.parent;
if (p.lesser != null)
((AVLNode<T>) p.lesser).updateHeight();
if (p.greater != null)
((AVLNode<T>) p.greater).updateHeight();
p.updateHeight();
}
} else if (balanceFactor == 2) {
AVLNode<T> rr = (AVLNode<T>) node.greater.greater;
int greater = (rr != null) ? rr.height : 0;
AVLNode<T> rl = (AVLNode<T>) node.greater.lesser;
int lesser = (rl != null) ? rl.height : 0;
if (greater >= lesser) {
rotateLeft(node);
node.updateHeight();
if (node.parent != null)
((AVLNode<T>) node.parent).updateHeight();
} else {
rotateRight(node.greater);
rotateLeft(node);
AVLNode<T> p = (AVLNode<T>) node.parent;
if (p.lesser != null)
((AVLNode<T>) p.lesser).updateHeight();
if (p.greater != null)
((AVLNode<T>) p.greater).updateHeight();
p.updateHeight();
}
}
}
}
/**
* {@inheritDoc}
*/
@Override
protected boolean validateNode(Node<T> node) {
boolean bst = super.validateNode(node);
if (!bst)
return false;
AVLNode<T> avlNode = (AVLNode<T>) node;
int balanceFactor = avlNode.getBalanceFactor();
if (balanceFactor > 1 || balanceFactor < -1) {
return false;
}
if (avlNode.isLeaf()) {
if (avlNode.height != 1)
return false;
} else {
AVLNode<T> avlNodeLesser = (AVLNode<T>) avlNode.lesser;
int lesserHeight = 1;
if (avlNodeLesser != null)
lesserHeight = avlNodeLesser.height;
AVLNode<T> avlNodeGreater = (AVLNode<T>) avlNode.greater;
int greaterHeight = 1;
if (avlNodeGreater != null)
greaterHeight = avlNodeGreater.height;
if (avlNode.height == (lesserHeight + 1) || avlNode.height == (greaterHeight + 1))
return true;
return false;
}
return true;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return AVLTreePrinter.getString(this);
}
protected static class AVLNode<T extends Comparable<T>> extends Node<T> {
protected int height = 1;
/**
* Constructor for an AVL node
*
* @param parent
* Parent of the node in the tree, can be NULL.
* @param value
* Value of the node in the tree.
*/
protected AVLNode(Node<T> parent, T value) {
super(parent, value);
}
/**
* Determines is this node is a leaf (has no children).
*
* @return True if this node is a leaf.
*/
protected boolean isLeaf() {
return ((lesser == null) && (greater == null));
}
/**
* Updates the height of this node based on it's children.
*/
protected int updateHeight() {
int lesserHeight = 0;
if (lesser != null) {
AVLNode<T> lesserAVLNode = (AVLNode<T>) lesser;
lesserHeight = lesserAVLNode.height;
}
int greaterHeight = 0;
if (greater != null) {
AVLNode<T> greaterAVLNode = (AVLNode<T>) greater;
greaterHeight = greaterAVLNode.height;
}
if (lesserHeight > greaterHeight) {
height = lesserHeight + 1;
} else {
height = greaterHeight + 1;
}
return height;
}
/**
* Get the balance factor for this node.
*
* @return An integer representing the balance factor for this node. It
* will be negative if the lesser branch is longer than the
* greater branch.
*/
protected int getBalanceFactor() {
int lesserHeight = 0;
if (lesser != null) {
AVLNode<T> lesserAVLNode = (AVLNode<T>) lesser;
lesserHeight = lesserAVLNode.height;
}
int greaterHeight = 0;
if (greater != null) {
AVLNode<T> greaterAVLNode = (AVLNode<T>) greater;
greaterHeight = greaterAVLNode.height;
}
return greaterHeight - lesserHeight;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return "value=" + id + " height=" + height + " parent=" + ((parent != null) ? parent.id : "NULL")
+ " lesser=" + ((lesser != null) ? lesser.id : "NULL") + " greater="
+ ((greater != null) ? greater.id : "NULL");
}
}
protected static class AVLTreePrinter {
public static <T extends Comparable<T>> String getString(AVLTree<T> tree) {
if (tree.root == null)
return "Tree has no nodes.";
return getString((AVLNode<T>) tree.root, "", true);
}
public static <T extends Comparable<T>> String getString(AVLNode<T> node) {
if (node == null)
return "Sub-tree has no nodes.";
return getString(node, "", true);
}
private static <T extends Comparable<T>> String getString(AVLNode<T> node, String prefix, boolean isTail) {
StringBuilder builder = new StringBuilder();
builder.append(prefix + (isTail ? "└── " : "├── ") + "(" + node.height + ") " + node.id + "\n");
List<Node<T>> children = null;
if (node.lesser != null || node.greater != null) {
children = new ArrayList<Node<T>>(2);
if (node.lesser != null)
children.add(node.lesser);
if (node.greater != null)
children.add(node.greater);
}
if (children != null) {
for (int i = 0; i < children.size() - 1; i++) {
builder.append(getString((AVLNode<T>) children.get(i), prefix + (isTail ? " " : "│ "), false));
}
if (children.size() >= 1) {
builder.append(getString((AVLNode<T>) children.get(children.size() - 1), prefix + (isTail ? " " : "│ "), true));
}
}
return builder.toString();
}
}
}