-
Notifications
You must be signed in to change notification settings - Fork 8
/
model.py
executable file
·193 lines (172 loc) · 8.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python36
# -*- coding: utf-8 -*-
"""
Created on July, 2018
@author: Tangrizzly
"""
import datetime
import math
import numpy as np
import torch
from torch import nn
from torch.nn import Module, Parameter
import torch.nn.functional as F
from tqdm import tqdm
class GNN(Module):
def __init__(self, hidden_size, step=1):
super(GNN, self).__init__()
self.step = step
self.hidden_size = hidden_size
self.input_size = hidden_size * 2
self.gate_size = 3 * hidden_size
self.w_ih = Parameter(torch.Tensor(self.gate_size, self.input_size))
self.w_hh = Parameter(torch.Tensor(self.gate_size, self.hidden_size))
self.b_ih = Parameter(torch.Tensor(self.gate_size))
self.b_hh = Parameter(torch.Tensor(self.gate_size))
self.b_iah = Parameter(torch.Tensor(self.hidden_size))
self.b_oah = Parameter(torch.Tensor(self.hidden_size))
self.linear_edge_in = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.linear_edge_out = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.linear_edge_f = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
def GNNCell(self, A, hidden):
input_in = torch.matmul(A[:, :, :A.shape[1]], self.linear_edge_in(hidden)) + self.b_iah
input_out = torch.matmul(A[:, :, A.shape[1]: 2 * A.shape[1]], self.linear_edge_out(hidden)) + self.b_oah
inputs = torch.cat([input_in, input_out], 2)
gi = F.linear(inputs, self.w_ih, self.b_ih)
gh = F.linear(hidden, self.w_hh, self.b_hh)
i_r, i_i, i_n = gi.chunk(3, 2)
h_r, h_i, h_n = gh.chunk(3, 2)
resetgate = torch.sigmoid(i_r + h_r)
inputgate = torch.sigmoid(i_i + h_i)
newgate = torch.tanh(i_n + resetgate * h_n)
hy = newgate + inputgate * (hidden - newgate)
return hy
def forward(self, A, hidden):
for i in range(self.step):
hidden = self.GNNCell(A, hidden)
return hidden
class SessionGraph(Module):
def __init__(self, opt, n_node):
super(SessionGraph, self).__init__()
self.hidden_size = opt.hiddenSize
self.n_node = n_node
self.norm = opt.norm
self.ta = opt.TA
self.scale = opt.scale
self.batch_size = opt.batchSize
self.nonhybrid = opt.nonhybrid
self.embedding = nn.Embedding(self.n_node, self.hidden_size)
self.gnn = GNN(self.hidden_size, step=opt.step)
self.linear_one = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.linear_two = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.linear_three = nn.Linear(self.hidden_size, 1, bias=False)
self.linear_transform = nn.Linear(self.hidden_size * 2, self.hidden_size, bias=True)
if self.ta:
self.linear_t = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # target attention
self.loss_function = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.parameters(), lr=opt.lr, weight_decay=opt.l2)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=opt.lr_dc_step, gamma=opt.lr_dc)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def compute_scores(self, hidden, mask):
ht = hidden[torch.arange(mask.shape[0]).long(), torch.sum(mask, 1) - 1] # batch_size x latent_size
q1 = self.linear_one(ht).view(ht.shape[0], 1, ht.shape[1]) # batch_size x 1 x latent_size
q2 = self.linear_two(hidden) # batch_size x seq_length x latent_size
alpha = self.linear_three(torch.sigmoid(q1 + q2))
a = torch.sum(alpha * hidden * mask.view(mask.shape[0], -1, 1).float(), 1)
if not self.nonhybrid:
a = self.linear_transform(torch.cat([a, ht], 1))
if self.norm:
# norms = torch.norm(a, p=2, dim=1, keepdim=True) # a needs to be normalized too
# a = a.div(norms)
norms = torch.norm(self.embedding.weight, p=2, dim=1).data # l2 norm over item embedding again for b
self.embedding.weight.data = self.embedding.weight.data.div(norms.view(-1, 1).expand_as(self.embedding.weight))
b = self.embedding.weight[1:] # n_nodes x latent_size
if self.ta:
qt = self.linear_t(hidden) # batch_size x seq_length x latent_size
beta = F.softmax(b @ qt.transpose(1, 2), -1) # batch_size x n_nodes x seq_length
target = beta @ hidden # batch_size x n_nodes x latent_size
a = a.view(ht.shape[0], 1, ht.shape[1]) # b,1,d
a = a + target # b,n,d
scores = torch.sum(a * b, -1) # b,n
else:
scores = torch.matmul(a, b.transpose(1, 0))
if self.scale:
scores = 16 * scores # 16 is the sigma factor
return scores
def forward(self, inputs, A):
if self.norm:
norms = torch.norm(self.embedding.weight, p=2, dim=1).data # l2 norm over item embedding
self.embedding.weight.data = self.embedding.weight.data.div(norms.view(-1, 1).expand_as(self.embedding.weight))
hidden = self.embedding(inputs)
hidden = self.gnn(A, hidden)
return hidden
def trans_to_cuda(variable):
if torch.cuda.is_available():
return variable.cuda()
else:
return variable
def trans_to_cpu(variable):
if torch.cuda.is_available():
return variable.cpu()
else:
return variable
def forward(model, i, data):
alias_inputs, A, items, mask, targets = data.get_slice(i)
alias_inputs = trans_to_cuda(torch.Tensor(alias_inputs).long())
items = trans_to_cuda(torch.Tensor(items).long())
A = trans_to_cuda(torch.Tensor(A).float())
mask = trans_to_cuda(torch.Tensor(mask).long())
hidden = model(items, A)
# if model.norm:
# seq_shape = list(hidden.size())
# hidden = hidden.view(-1, model.hidden_size)
# norms = torch.norm(hidden, p=2, dim=1) # l2 norm over session embedding
# hidden = hidden.div(norms.unsqueeze(-1).expand_as(hidden))
# hidden = hidden.view(seq_shape)
get = lambda i: hidden[i][alias_inputs[i]]
seq_hidden = torch.stack([get(i) for i in torch.arange(len(alias_inputs)).long()])
if model.norm:
seq_shape = list(seq_hidden.size())
seq_hidden = seq_hidden.view(-1, model.hidden_size)
norms = torch.norm(seq_hidden, p=2, dim=1) # l2 norm over session embedding
seq_hidden = seq_hidden.div(norms.unsqueeze(-1).expand_as(seq_hidden))
seq_hidden = seq_hidden.view(seq_shape)
return targets, model.compute_scores(seq_hidden, mask)
def train_test(model, train_data, test_data):
model.scheduler.step()
print('start training: ', datetime.datetime.now())
model.train()
total_loss = 0.0
slices = train_data.generate_batch(model.batch_size)
for i, j in tqdm(zip(slices, np.arange(len(slices))), total=len(slices)):
model.optimizer.zero_grad()
targets, scores = forward(model, i, train_data)
targets = trans_to_cuda(torch.Tensor(targets).long())
loss = model.loss_function(scores, targets - 1)
loss.backward()
model.optimizer.step()
total_loss += loss
if j % int(len(slices) / 5 + 1) == 0:
print('[%d/%d] Loss: %.4f' % (j, len(slices), loss.item()))
print('\tLoss:\t%.3f' % total_loss)
print('start predicting: ', datetime.datetime.now())
model.eval()
hit, mrr = [], []
slices = test_data.generate_batch(model.batch_size)
for i in slices:
targets, scores = forward(model, i, test_data)
sub_scores = scores.topk(20)[1]
sub_scores = trans_to_cpu(sub_scores).detach().numpy()
for score, target, mask in zip(sub_scores, targets, test_data.mask):
hit.append(np.isin(target - 1, score))
if len(np.where(score == target - 1)[0]) == 0:
mrr.append(0)
else:
mrr.append(1 / (np.where(score == target - 1)[0][0] + 1))
hit = np.mean(hit) * 100
mrr = np.mean(mrr) * 100
return hit, mrr