forked from kuleshov-group/mdlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lm1b_ar.sh
executable file
·29 lines (28 loc) · 1.15 KB
/
train_lm1b_ar.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#!/bin/bash
#SBATCH -J train_ar # Job name
#SBATCH -o watch_folder/%x_%j.out # output file (%j expands to jobID)
#SBATCH -N 1 # Total number of nodes requested
#SBATCH --get-user-env # retrieve the users login environment
#SBATCH --mem=32000 # server memory requested (per node)
#SBATCH -t 960:00:00 # Time limit (hh:mm:ss)
#SBATCH --partition=gpu # Request partition
#SBATCH --constraint="[a5000|a6000|a100|3090]"
#SBATCH --constraint="gpu-mid|gpu-high"
#SBATCH --ntasks-per-node=4
#SBATCH --gres=gpu:4 # Type/number of GPUs needed
#SBATCH --open-mode=append # Do not overwrite logs
#SBATCH --requeue # Requeue upon pre-emption
# To enable preemption re-loading, set `hydra.run.dir` or
# `checkpointing.save_dir` explicitly.
srun python -u -m main \
loader.batch_size=16 \
loader.eval_batch_size=16 \
model=small-ar \
backbone=ar \
data=lm1b \
wandb.name=ar-lm1b \
parameterization=ar \
model.length=128 \
eval.compute_generative_perplexity=True \
sampling.steps=1000 \
time_conditioning=True