-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcnn_train_dag.m
382 lines (331 loc) · 11.7 KB
/
cnn_train_dag.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
function [net,stats] = cnn_train_dag(net, imdb, getBatch, varargin)
%CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper
% CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with
% the DagNN wrapper instead of the SimpleNN wrapper.
% Copyright (C) 2014-15 Andrea Vedaldi.
% All rights reserved.
%
% This file is part of the VLFeat library and is made available under
% the terms of the BSD license (see the COPYING file).
% Todo: save momentum with checkpointing (a waste?)
opts.expDir = fullfile('data','exp') ;
opts.continue = true ;
opts.batchSize = 256 ;
opts.numSubBatches = 1 ;
opts.train = [] ;
opts.val = [] ;
opts.gpus = [] ;
opts.prefetch = false ;
opts.numEpochs = 300 ;
opts.learningRate = 0.001 ;
opts.weightDecay = 0.0005 ;
opts.momentum = 0.9 ;
opts.memoryMapFile = fullfile(tempdir, 'matconvnet.bin') ;
opts.profile = false ;
opts.derOutputs = {'objective', 1} ;
opts.extractStatsFn = @extractStats ;
opts.plotStatistics = true;
opts.T1 = 1 ;
opts.T2 = 1 ;
opts.lambda = 1;
opts.useDistill = 0;
opts = vl_argparse(opts, varargin) ;
if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end
if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end
if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end
if isnan(opts.train), opts.train = [] ; end
% -------------------------------------------------------------------------
% Initialization
% -------------------------------------------------------------------------
state.getBatch = getBatch ;
evaluateMode = isempty(opts.train) ;
if ~evaluateMode
if isempty(opts.derOutputs)
error('DEROUTPUTS must be specified when training.\n') ;
end
end
stats = [] ;
% setup GPUs
numGpus = numel(opts.gpus) ;
if numGpus > 1
if isempty(gcp('nocreate')),
parpool('local',numGpus) ;
spmd, gpuDevice(opts.gpus(labindex)), end
end
if exist(opts.memoryMapFile)
delete(opts.memoryMapFile) ;
end
elseif numGpus == 1
gpuDevice(opts.gpus)
end
% -------------------------------------------------------------------------
% Train and validate
% -------------------------------------------------------------------------
modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep));
modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ;
start = opts.continue * findLastCheckpoint(opts.expDir) ;
if start >= 1
fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ;
[net, stats] = loadState(modelPath(start)) ;
end
for epoch=start+1:opts.numEpochs
% train one epoch
state.epoch = epoch ;
state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ;
state.train = opts.train(randperm(numel(opts.train))) ; % shuffle
opts.multids = 0;
state.val = opts.val ;
state.imdb = imdb ;
if numGpus <= 1
stats.train(epoch) = process_epoch(net, state, opts, 'train') ;
stats.val(epoch) = process_epoch(net, state, opts, 'val') ;
else
savedNet = net.saveobj() ;
spmd
net_ = dagnn.DagNN.loadobj(savedNet) ;
stats_.train = process_epoch(net_, state, opts, 'train') ;
stats_.val = process_epoch(net_, state, opts, 'val') ;
if labindex == 1, savedNet_ = net_.saveobj() ; end
end
net = dagnn.DagNN.loadobj(savedNet_{1}) ;
stats__ = accumulateStats(stats_) ;
stats.train(epoch) = stats__.train ;
stats.val(epoch) = stats__.val ;
clear net_ stats_ stats__ savedNet_ ;
end
if ~evaluateMode
saveState(modelPath(epoch), net, stats) ;
end
if opts.plotStatistics
figure(1) ; clf ;
plots = setdiff(...
cat(2,...
fieldnames(stats.train)', ...
fieldnames(stats.val)'), {'num', 'time'}) ;
for p = plots
p = char(p) ;
values = zeros(0, epoch) ;
leg = {} ;
for f = {'train', 'val'}
f = char(f) ;
if isfield(stats.(f), p)
tmp = [stats.(f).(p)] ;
values(end+1,:) = tmp(1,:)' ;
leg{end+1} = f ;
end
end
subplot(1,numel(plots),find(strcmp(p,plots))) ;
plot(1:epoch, values','o-') ;
xlabel('epoch') ;
title(p) ;
legend(leg{:}) ;
grid on ;
end
drawnow ;
print(1, modelFigPath, '-dpdf') ;
end
end
% -------------------------------------------------------------------------
function stats = process_epoch(net, state, opts, mode)
% -------------------------------------------------------------------------
if strcmp(mode,'train')
state.momentum = num2cell(zeros(1, numel(net.params))) ;
end
numGpus = numel(opts.gpus) ;
if numGpus >= 1
net.move('gpu') ;
if strcmp(mode,'train')
state.momentum = cellfun(@gpuArray,state.momentum,'UniformOutput',false) ;
end
end
if numGpus > 1
mmap = map_gradients(opts.memoryMapFile, net, numGpus) ;
else
mmap = [] ;
end
stats.time = 0 ;
stats.num = 0 ;
subset = state.(mode) ;
start = tic ;
num = 0 ;
for t=1:opts.batchSize:numel(subset)
batchSize = min(opts.batchSize, numel(subset) - t + 1) ;
for s=1:opts.numSubBatches
% get this image batch and prefetch the next
batchStart = t + (labindex-1) + (s-1) * numlabs ;
batchEnd = min(t+opts.batchSize-1, numel(subset)) ;
batch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ;
num = num + numel(batch) ;
if numel(batch) == 0, continue ; end
inputs = state.getBatch(state.imdb, batch, state.epoch) ;
if opts.prefetch
if s == opts.numSubBatches
batchStart = t + (labindex-1) + opts.batchSize ;
batchEnd = min(t+2*opts.batchSize-1, numel(subset)) ;
else
batchStart = batchStart + numlabs ;
end
nextBatch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ;
state.getBatch(state.imdb, nextBatch, state.epoch) ;
end
if strcmp(mode, 'train')
net.mode = 'normal' ;
net.accumulateParamDers = (s ~= 1) ;
if opts.useDistill
opts.derOutputs = cat(2, opts.derOutputs, 'distilled_loss', opts.lambda);
end
net.eval(inputs, opts.derOutputs) ;
else
net.mode = 'test' ;
net.eval(inputs) ;
end
end
% extract learning stats
stats = opts.extractStatsFn(net) ;
% accumulate gradient
if strcmp(mode, 'train')
if ~isempty(mmap)
write_gradients(mmap, net) ;
labBarrier() ;
end
state = accumulate_gradients(state, net, opts, batchSize, mmap) ;
end
% print learning statistics
time = toc(start) ;
stats.num = num ;
stats.time = toc(start) ;
fprintf('%s: epoch %02d: %3d/%3d: %.1f Hz', ...
mode, ...
state.epoch, ...
fix(t/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize), ...
stats.num/stats.time * max(numGpus, 1)) ;
for f = setdiff(fieldnames(stats)', {'num', 'time'})
f = char(f) ;
fprintf(' %s:', f) ;
fprintf(' %.3f', stats.(f)) ;
end
fprintf('\n') ;
end
net.reset() ;
net.move('cpu') ;
% -------------------------------------------------------------------------
function state = accumulate_gradients(state, net, opts, batchSize, mmap)
% -------------------------------------------------------------------------
for p=1:numel(net.params)
if ~isempty(net.params(p).der) % added for multi-dataset
% bring in gradients from other GPUs if any
if ~isempty(mmap)
numGpus = numel(mmap.Data) ;
tmp = zeros(size(mmap.Data(labindex).(net.params(p).name)), 'single') ;
for g = setdiff(1:numGpus, labindex)
tmp = tmp + mmap.Data(g).(net.params(p).name) ;
end
net.params(p).der = net.params(p).der + tmp ;
else
numGpus = 1 ;
end
switch net.params(p).trainMethod
case 'average' % mainly for batch normalization
thisLR = net.params(p).learningRate ;
net.params(p).value = ...
(1 - thisLR) * net.params(p).value + ...
(thisLR/batchSize/net.params(p).fanout) * net.params(p).der ;
case 'gradient'
thisDecay = opts.weightDecay * net.params(p).weightDecay ;
thisLR = state.learningRate * net.params(p).learningRate ;
state.momentum{p} = opts.momentum * state.momentum{p} ...
- thisDecay * net.params(p).value ...
- (1 / batchSize) * net.params(p).der ;
net.params(p).value = net.params(p).value + thisLR * state.momentum{p} ;
case 'otherwise'
error('Unknown training method ''%s'' for parameter ''%s''.', ...
net.params(p).trainMethod, ...
net.params(p).name) ;
end
end
end
% -------------------------------------------------------------------------
function mmap = map_gradients(fname, net, numGpus)
% -------------------------------------------------------------------------
format = {} ;
for i=1:numel(net.params)
format(end+1,1:3) = {'single', size(net.params(i).value), net.params(i).name} ;
end
format(end+1,1:3) = {'double', [3 1], 'errors'} ;
if ~exist(fname) && (labindex == 1)
f = fopen(fname,'wb') ;
for g=1:numGpus
for i=1:size(format,1)
fwrite(f,zeros(format{i,2},format{i,1}),format{i,1}) ;
end
end
fclose(f) ;
end
labBarrier() ;
mmap = memmapfile(fname, 'Format', format, 'Repeat', numGpus, 'Writable', true) ;
% -------------------------------------------------------------------------
function write_gradients(mmap, net)
% -------------------------------------------------------------------------
for i=1:numel(net.params)
if ~isempty(net.params(i).der) % added for multi-dataset
mmap.Data(labindex).(net.params(i).name) = gather(net.params(i).der) ;
end
end
% -------------------------------------------------------------------------
function stats = accumulateStats(stats_)
% -------------------------------------------------------------------------
stats = struct() ;
for s = {'train', 'val'}
s = char(s) ;
total = 0 ;
for g = 1:numel(stats_)
stats__ = stats_{g} ;
num__ = stats__.(s).num ;
total = total + num__ ;
for f = setdiff(fieldnames(stats__.(s))', 'num')
f = char(f) ;
if g == 1
stats.(s).(f) = 0 ;
end
stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ;
if g == numel(stats_)
stats.(s).(f) = stats.(s).(f) / total ;
end
end
end
stats.(s).num = total ;
end
% -------------------------------------------------------------------------
function stats = extractStats(net)
% -------------------------------------------------------------------------
sel = find(cellfun(@(x) isa(x,'dagnn.Loss'), {net.layers.block})) ;
stats = struct() ;
for i = 1:numel(sel)
stats.(net.layers(sel(i)).outputs{1}) = net.layers(sel(i)).block.average ;
end
sel = find(cellfun(@(x) isa(x,'Loss_Hierarchy'), {net.layers.block})) ;
for i = 1:numel(sel)
stats.(net.layers(sel(i)).outputs{1}) = sum(net.layers(sel(i)).block.average) ;
end
sel = find(cellfun(@(x) isa(x,'Loss_Mask_Class'), {net.layers.block})) ;
for i = 1:numel(sel)
stats.(net.layers(sel(i)).outputs{1}) = sum(net.layers(sel(i)).block.average) ;
end
% -------------------------------------------------------------------------
function saveState(fileName, net, stats)
% -------------------------------------------------------------------------
net_ = net ;
net = net_.saveobj() ;
save(fileName, 'net', 'stats') ;
% -------------------------------------------------------------------------
function [net, stats] = loadState(fileName)
% -------------------------------------------------------------------------
load(fileName, 'net', 'stats') ;
net = dagnn.DagNN.loadobj(net) ;
% -------------------------------------------------------------------------
function epoch = findLastCheckpoint(modelDir)
% -------------------------------------------------------------------------
list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ;
tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ;
epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ;
epoch = max([epoch 0]) ;