-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy patharguments.py
317 lines (269 loc) · 14.8 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# coding=utf-8
# Copyright 2020 The OpenBMB team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import deepspeed
import numpy as np
def add_model_args(parser: argparse.ArgumentParser):
"""Model arguments"""
group = parser.add_argument_group('model', 'model configuration')
group.add_argument('--model-path', type=str, help='model path')
group.add_argument("--ckpt-name", type=str)
group.add_argument("--model-type", type=str, default="gpt2")
group.add_argument("--teacher-model-type", type=str, default=None)
group.add_argument("--n-gpu", type=int, default=1)
group.add_argument("--n-nodes", type=int, default=1)
group.add_argument("--teacher-model-path", type=str)
group.add_argument("--teacher-ckpt-name", type=str)
group.add_argument("--teacher-model-fp16", action="store_true")
group.add_argument("--model-parallel", action="store_true")
group.add_argument("--model-parallel-size", type=int, default=None)
group.add_argument("--no-value", action="store_true")
group.add_argument("--dropout-path-rate", type=float, default=None)
group.add_argument("--fp32", action="store_true")
return parser
def add_runtime_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('runtime', 'runtime configurations')
group.add_argument("--type", type=str, default=None)
group.add_argument("--do-train", action="store_true")
group.add_argument("--do-valid", action="store_true")
group.add_argument("--do-eval", action="store_true")
group.add_argument('--base-path', type=str, default=None, help='Path to the project base directory.')
group.add_argument('--load', type=str, default=None,
help='Path to a directory containing a model checkpoint.')
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument("--log-interval", type=int, default=10)
group.add_argument("--mid-log-num", type=int, default=4)
group.add_argument('--save-interval', type=int, default=1000,
help='number of iterations between saves')
group.add_argument("--eval-interval", type=int, default=1000)
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher')
group.add_argument("--save-additional-suffix", type=str, default="")
group.add_argument("--save-rollout", action="store_true")
group.add_argument("--eb-sample-times", type=int, default=3)
return parser
def add_data_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('data', 'data configurations')
group.add_argument("--data-dir", type=str, default=None)
group.add_argument("--processed-data-dir", type=str, default=None)
group.add_argument("--force-process", action="store_true")
group.add_argument("--force-process-demo", action="store_true")
group.add_argument("--data-process-workers", type=int, default=-1)
group.add_argument("--train-num", type=int, default=-1)
group.add_argument("--train-ratio", type=float, default=1)
group.add_argument("--dev-num", type=int, default=-1)
group.add_argument("--dev-ratio", type=float, default=1)
group.add_argument("--gen-num", type=int, default=-1)
group.add_argument("--data-names", type=str, default=None)
group.add_argument("--prompt-type", type=str, default=None)
group.add_argument("--num-workers", type=int, default=1)
group.add_argument("--max-prompt-length", type=int, default=512)
group.add_argument("--min-prompt-length", type=int, default=128)
group.add_argument("--json-data", action="store_true")
group.add_argument("--bin-data", action="store_true")
group.add_argument("--txt-data", action="store_true")
group.add_argument("--prompt-data-dir", type=str)
group.add_argument("--lm-data-dir", type=str)
group.add_argument("--eval-ppl", action="store_true")
group.add_argument("--eval-rw", action="store_true")
group.add_argument("--eval-gen", action="store_true")
group.add_argument("--only-prompt", action="store_true")
return parser
def add_hp_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group("hp", "hyper parameter configurations")
group.add_argument('--batch-size', type=int, default=32,
help='Data Loader batch size')
group.add_argument('--eval-batch-size', type=int, default=32,
help='Data Loader batch size')
group.add_argument('--clip-grad', type=float, default=1.0,
help='gradient clipping')
group.add_argument('--total-iters', type=int, default=None,
help='total number of iterations')
group.add_argument('--train-iters-per-epoch', type=int, default=-1,
help='total number of iterations per epoch')
group.add_argument('--max-length', type=int, default=1024,
help='max length of input')
group.add_argument('--seed', type=int, default=1234,
help='random seed for reproducibility')
group.add_argument("--seed-order", type=int, default=42)
group.add_argument("--seed-data", type=int, default=42)
group.add_argument("--seed-ppo", type=int, default=42)
group.add_argument("--seed-lm", type=int, default=7)
group.add_argument('--epochs', type=int, default=None,
help='total number of epochs to train over all training runs')
group.add_argument('--training-epochs', type=int, default=10000)
group.add_argument("--gradient-accumulation-steps", type=int, default=1)
group.add_argument("--gradient-checkpointing", action="store_true")
group.add_argument("--attn-dtype", default=None)
group.add_argument('--lr', type=float, help='initial learning rate')
group.add_argument("--lr-min", type=float, default=0.0000001)
group.add_argument('--weight-decay', type=float, default=1.0e-2,
help='weight-decay')
group.add_argument('--loss-scale', type=float, default=65536,
help='loss scale')
group.add_argument("--kd-ratio", type=float, default=None)
group.add_argument('--warmup-iters', type=int, default=0,
help='percentage of data to warmup on (.01 = 1% of all '
'training iters). Default 0.01')
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay LR over,'
' If None defaults to `--train-iters`*`--epochs`')
group.add_argument('--lr-decay-style', type=str, default='noam',
choices=['constant', 'linear', 'cosine', 'exponential', 'noam'],
help='learning rate decay function')
group.add_argument("--scheduler-name", type=str, default="constant_trm")
return parser
def add_ppo_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('ppo', 'ppo configurations')
group.add_argument("--reward-scaling", type=float, default=None)
group.add_argument("--cliprange-reward", type=float, default=1)
group.add_argument("--ppo-epochs", type=int, default=None)
group.add_argument("--num-rollouts", type=int, default=256)
group.add_argument("--num-rollouts-per-device", type=int, default=None)
group.add_argument("--cliprange", type=float, default=0.2)
group.add_argument("--chunk-size", type=int, default=None)
group.add_argument("--gamma", type=float, default=0.95)
return parser
def add_minillm_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('minillm', 'minillm configurations')
group.add_argument("--length-norm", action="store_true")
group.add_argument("--single-step-reg", action="store_true")
group.add_argument("--teacher-mixed-alpha", type=float, default=None)
group.add_argument("--lm-coef", type=float, default=1)
return parser
def add_distillm_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('distillm', 'distillm configurations')
# skew kld
group.add_argument("--skew-alpha", type=float, default=0.1)
# student generation
group.add_argument("--student-gen", action="store_true")
group.add_argument("--gen-top-p", type=float, default=1.0)
group.add_argument("--gen-num-beams", type=int, default=2)
# adaptive threshold
group.add_argument("--mixed-alpha", type=float, default=0.5)
group.add_argument("--loss-eps", type=float, default=0.1)
group.add_argument("--init-threshold", type=float, default=0.0)
# off-policy
group.add_argument("--capacity", type=int, default=1000)
group.add_argument("--replay-ratio", type=str, default="decreasing")
# group.add_argument("--time", action="store_true")
return parser
def add_gen_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('generation', 'generation configurations')
group.add_argument("--top-k", type=int, default=0)
group.add_argument("--top-p", type=float, default=1.0)
group.add_argument("--do-sample", action="store_true")
group.add_argument("--no-repeat-ngram-size", type=int, default=6)
group.add_argument("--repetition-penalty", type=float, default=None)
group.add_argument("--num-beams", type=int, default=1)
group.add_argument("--temperature", type=float, default=1)
return parser
def add_peft_args(parser: argparse.ArgumentParser):
group = parser.add_argument_group('generation', 'generation configurations')
group.add_argument("--peft", type=str, default=None)
group.add_argument("--peft-lora-r", type=int, default=16)
group.add_argument("--peft-lora-alpha", type=int, default=64)
group.add_argument("--peft-lora-dropout", type=float, default=0.1)
group.add_argument("--peft-name", type=str, default=None)
group.add_argument("--peft-path", type=str, default=None)
group.add_argument("--teacher-peft-name", type=str, default=None)
group.add_argument("--teacher-peft-path", type=str, default=None)
return parser
def get_args():
parser = argparse.ArgumentParser()
parser = add_model_args(parser)
parser = add_runtime_args(parser)
parser = add_data_args(parser)
parser = add_hp_args(parser)
parser = add_ppo_args(parser)
parser = add_minillm_args(parser)
parser = add_distillm_args(parser)
parser = add_gen_args(parser)
parser = add_peft_args(parser)
parser = deepspeed.add_config_arguments(parser)
args, unknown = parser.parse_known_args()
assert all(["--" not in x for x in unknown]), unknown
args.local_rank = int(os.getenv("LOCAL_RANK", "0"))
args.n_gpu = args.n_gpu * args.n_nodes
if args.type == "eval_main":
ckpt_name = None
if args.ckpt_name is not None:
ckpt_name = args.ckpt_name
if args.peft_name is not None:
ckpt_name = args.peft_name
if ckpt_name is not None:
tmp = ckpt_name.split("/")
if tmp[-1].isdigit():
ckpt_name = "_".join(tmp[:-1]) + "/" + tmp[-1]
else:
ckpt_name = "_".join(tmp)
save_path = os.path.join(
args.save,
f"{args.data_names}-{args.max_length}" + (f"-mp{args.model_parallel_size}" if args.model_parallel > 0 else ""),
ckpt_name,
f"{args.seed}",
)
args.save = save_path
elif args.type == "lm":
save_path = os.path.join(
args.save,
(f"{args.ckpt_name}" + f"-{args.peft_name}" if args.peft_name is not None else ""),
(f"e{args.epochs}-bs{args.batch_size}-lr{args.lr}-G{args.gradient_accumulation_steps}-N{args.n_gpu}-NN{args.n_nodes}") + \
(f"-mp{args.model_parallel_size}" if args.model_parallel > 0 else "") + \
(f"-lora-{args.peft_lora_r}-{args.peft_lora_alpha}-{args.peft_lora_dropout}" if args.peft == "lora" else "") + \
args.save_additional_suffix
)
args.save = save_path
elif args.type == "kd":
save_path = os.path.join(
args.save,
(f"{args.ckpt_name}" + f"-{args.peft_name}" if args.peft_name is not None else "" + \
f"-{args.teacher_ckpt_name}" + f"-{args.teacher_peft_name}" if args.teacher_peft_name is not None else ""),
(f"e{args.epochs}-bs{args.batch_size}-lr{args.lr}-G{args.gradient_accumulation_steps}-N{args.n_gpu}-NN{args.n_nodes}-kd{args.kd_ratio}") + \
(f"-mp{args.model_parallel_size}" if args.model_parallel > 0 else "") + \
(f"-lora-{args.peft_lora_r}-{args.peft_lora_alpha}-{args.peft_lora_dropout}" if args.peft == "lora" else "") + \
args.save_additional_suffix
)
args.save = save_path
elif args.type == "gen":
save_path = os.path.join(
args.save,
(f"{args.ckpt_name}"),
(f"t{args.temperature}-l{args.max_length}"),
)
args.save = save_path
elif args.type == "minillm":
ppo_prefix = f"pe{args.ppo_epochs}" + \
(f"_rs{args.reward_scaling}" if args.ppo_epochs is not None else "") + \
(f"_nr{args.num_rollouts}" if args.num_rollouts is not None else "") + \
(f"_ln" if args.length_norm else "") + \
(f"_sr" if args.single_step_reg else "") + \
(f"_tm{args.teacher_mixed_alpha}" if args.teacher_mixed_alpha is not None else "")
save_path = os.path.join(
args.save,
(f"{args.ckpt_name}" + f"-{args.peft_name}" if args.peft_name is not None else "" + \
f"-{args.teacher_ckpt_name}" + f"-{args.teacher_peft_name}" if args.teacher_peft_name is not None else ""),
(f"bs{args.batch_size}-lr{args.lr}-G{args.gradient_accumulation_steps}-N{args.n_gpu}-NN{args.n_nodes}-lm{args.lm_coef}-len{args.max_length}" + \
(f"-mp{args.model_parallel_size}" if args.model_parallel > 0 else "")) + \
(f"-lora-{args.peft_lora_r}-{args.peft_lora_alpha}-{args.peft_lora_dropout}" if args.peft == "lora" else ""),
ppo_prefix + args.save_additional_suffix
)
args.save = save_path
args.num_rollouts_per_device = args.num_rollouts // args.n_gpu
if args.warmup_iters > 0:
assert args.scheduler_name is not None
return args