-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbasic_aco.py
155 lines (130 loc) · 6.06 KB
/
basic_aco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import random
from vprtw_aco_figure import VrptwAcoFigure
from vrptw_base import VrptwGraph, PathMessage
from ant import Ant
from threading import Thread
from queue import Queue
import time
class BasicACO:
def __init__(self, graph: VrptwGraph, ants_num=10, max_iter=200, beta=2, q0=0.1,
whether_or_not_to_show_figure=True):
super()
# graph 结点的位置、服务时间信息
self.graph = graph
# ants_num 蚂蚁数量
self.ants_num = ants_num
# max_iter 最大迭代次数
self.max_iter = max_iter
# vehicle_capacity 表示每辆车的最大载重
self.max_load = graph.vehicle_capacity
# beta 启发性信息重要性
self.beta = beta
# q0 表示直接选择概率最大的下一点的概率
self.q0 = q0
# best path
self.best_path_distance = None
self.best_path = None
self.best_vehicle_num = None
self.whether_or_not_to_show_figure = whether_or_not_to_show_figure
def run_basic_aco(self):
# 开启一个线程来跑_basic_aco,使用主线程来绘图
path_queue_for_figure = Queue()
basic_aco_thread = Thread(target=self._basic_aco, args=(path_queue_for_figure,))
basic_aco_thread.start()
# 是否要展示figure
if self.whether_or_not_to_show_figure:
figure = VrptwAcoFigure(self.graph.nodes, path_queue_for_figure)
figure.run()
basic_aco_thread.join()
# 传入None作为结束标志
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(None, None))
def _basic_aco(self, path_queue_for_figure: Queue):
"""
最基本的蚁群算法
:return:
"""
start_time_total = time.time()
# 最大迭代次数
start_iteration = 0
for iter in range(self.max_iter):
# 为每只蚂蚁设置当前车辆负载,当前旅行距离,当前时间
ants = list(Ant(self.graph) for _ in range(self.ants_num))
for k in range(self.ants_num):
# 蚂蚁需要访问完所有的客户
while not ants[k].index_to_visit_empty():
next_index = self.select_next_index(ants[k])
# 判断加入该位置后,是否还满足约束条件, 如果不满足,则再选择一次,然后再进行判断
if not ants[k].check_condition(next_index):
next_index = self.select_next_index(ants[k])
if not ants[k].check_condition(next_index):
next_index = 0
# 更新蚂蚁路径
ants[k].move_to_next_index(next_index)
self.graph.local_update_pheromone(ants[k].current_index, next_index)
# 最终回到0位置
ants[k].move_to_next_index(0)
self.graph.local_update_pheromone(ants[k].current_index, 0)
# 计算所有蚂蚁的路径长度
paths_distance = np.array([ant.total_travel_distance for ant in ants])
# 记录当前的最佳路径
best_index = np.argmin(paths_distance)
if self.best_path is None or paths_distance[best_index] < self.best_path_distance:
self.best_path = ants[int(best_index)].travel_path
self.best_path_distance = paths_distance[best_index]
self.best_vehicle_num = self.best_path.count(0) - 1
start_iteration = iter
# 图形化展示
if self.whether_or_not_to_show_figure:
path_queue_for_figure.put(PathMessage(self.best_path, self.best_path_distance))
print('\n')
print('[iteration %d]: find a improved path, its distance is %f' % (iter, self.best_path_distance))
print('it takes %0.3f second multiple_ant_colony_system running' % (time.time() - start_time_total))
# 更新信息素表
self.graph.global_update_pheromone(self.best_path, self.best_path_distance)
given_iteration = 100
if iter - start_iteration > given_iteration:
print('\n')
print('iteration exit: can not find better solution in %d iteration' % given_iteration)
break
print('\n')
print('final best path distance is %f, number of vehicle is %d' % (self.best_path_distance, self.best_vehicle_num))
print('it takes %0.3f second multiple_ant_colony_system running' % (time.time() - start_time_total))
def select_next_index(self, ant):
"""
选择下一个结点
:param ant:
:return:
"""
current_index = ant.current_index
index_to_visit = ant.index_to_visit
transition_prob = self.graph.pheromone_mat[current_index][index_to_visit] * \
np.power(self.graph.heuristic_info_mat[current_index][index_to_visit], self.beta)
transition_prob = transition_prob / np.sum(transition_prob)
if np.random.rand() < self.q0:
max_prob_index = np.argmax(transition_prob)
next_index = index_to_visit[max_prob_index]
else:
# 使用轮盘赌算法
next_index = BasicACO.stochastic_accept(index_to_visit, transition_prob)
return next_index
@staticmethod
def stochastic_accept(index_to_visit, transition_prob):
"""
轮盘赌
:param index_to_visit: a list of N index (list or tuple)
:param transition_prob:
:return: selected index
"""
# calculate N and max fitness value
N = len(index_to_visit)
# normalize
sum_tran_prob = np.sum(transition_prob)
norm_transition_prob = transition_prob/sum_tran_prob
# select: O(1)
while True:
# randomly select an individual with uniform probability
ind = int(N * random.random())
if random.random() <= norm_transition_prob[ind]:
return index_to_visit[ind]