-
Notifications
You must be signed in to change notification settings - Fork 1
/
modelB_time.jl
169 lines (135 loc) · 4.3 KB
/
modelB_time.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
cd("/share/tmschaef/jkott/modelB/KZ")
using Distributions
using Printf
using JLD2
using Random
using CUDA
using CUDA.CUFFT
using CodecZlib
Random.seed!(parse(Int, ARGS[3]))
CUDA.seed!(parse(Int, ARGS[3]))
const L = parse(Int, ARGS[2]) # must be a multiple of 4
const λ = 4.0e0
const Γ = 1.0e0
const T = 1.0e0
const z = 4.0e0
const Δt = 0.04e0/Γ
const Rate = Float64(sqrt(2.0*Δt*Γ))
m² = [-1.8, -1.9, -2.0, -2.1, -2.15, -2.2, -2.22, -2.24, -2.26]
ξ = [3, 3, 3, 4, 5, 7, 8, 11, 22]
function ΔH(x, ϕ, q, m², L)
@inbounds ϕold = ϕ[x...]
ϕt = ϕold + q
Δϕ = ϕt - ϕold
Δϕ² = ϕt^2 - ϕold^2
@inbounds ∑nn = ϕ[x[1]%L+1, x[2], x[3]] + ϕ[x[1], x[2]%L+1, x[3]] + ϕ[x[1], x[2], x[3]%L+1] + ϕ[(x[1]+L-2)%L+1, x[2], x[3]] + ϕ[x[1], (x[2]+L-2)%L+1, x[3]] + ϕ[x[1], x[2], (x[3]+L-2)%L+1]
return 3Δϕ² - Δϕ * ∑nn + 0.5m² * Δϕ² + 0.25λ * (ϕt^4 - ϕold^4)
end
function step(m², ϕ, x1, x2, L)
norm = cos(2π*rand())*sqrt(-2*log(rand()))
q = Rate*norm
δH = ΔH(x1, ϕ, q, m², L) + ΔH(x2, ϕ, -q, m², L) + q^2
P = min(1.0f0, exp(-δH))
r = rand()
@inbounds ϕ[x1...] += q * (r<P)
@inbounds ϕ[x2...] -= q * (r<P)
end
function sweep(m², ϕ, threads, blocks)
#=
n=0 : (i,j,k)->(x,y,z)
n=1 : (i,j,k)->(y,z,x)
n=2 : (i,j,k)->(z,x,y)
pairs are in i direction
=#
for m in 1:4
kernel_i(m², ϕ, L, m; threads, blocks)
kernel_j(m², ϕ, L, m; threads, blocks)
kernel_k(m², ϕ, L, m; threads, blocks)
end
end
function gpu_sweep_i(m², ϕ, L, m)
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x - 1
stride = gridDim().x * blockDim().x
for l in index:stride:L^3÷4-1
i = l ÷ L^2
j = (l÷L) % L
k = l%L
x1 = ((4i + 2j + m%2)%L+1, (j + k + m÷2)%L+1, k%L+1)
@inbounds x2 = (x1[1]%L+1, x1[2], x1[3])
step(m², ϕ, x1, x2, L)
end
return
end
function gpu_sweep_j(m², ϕ, L, m)
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x - 1
stride = gridDim().x * blockDim().x
for l in index:stride:L^3÷4-1
i = l ÷ L^2
j = (l÷L) % L
k = l%L
x1 = (k%L+1, (4i + 2j + m%2)%L+1, (j + k + m÷2)%L+1)
@inbounds x2 = (x1[1], x1[2]%L+1, x1[3])
step(m², ϕ, x1, x2, L)
end
return
end
function gpu_sweep_k(m², ϕ, L, m)
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x - 1
stride = gridDim().x * blockDim().x
for l in index:stride:L^3÷4-1
i = l ÷ L^2
j = (l÷L) % L
k = l%L
x1 = ((j + k + m÷2)%L+1, k%L+1, (4i + 2j + m%2)%L+1)
@inbounds x2 = (x1[1], x1[2], x1[3]%L+1)
step(m², ϕ, x1, x2, L)
end
return
end
function CorrFunc(ϕ, L)
C = zeros(L÷2+1)
for r in 0:(L÷2), i in 1:L, j in 1:L, k in 1:L
C[r+1] = C[r+1] + ϕ[mod(i+r-1,L)+1,j,k]*ϕ[i,j,k] + ϕ[i,mod(j+r-1,L)+1,k]*ϕ[i,j,k] + ϕ[i,j,mod(k+r-1,L)+1]*ϕ[i,j,k]
end
C
end
function thermalize(m², ϕ, threads, blocks, N=10000)
for i in 0:N-1
sweep(m², ϕ, threads, blocks)
end
end
ϕ = CUDA.zeros(Float64, L, L, L)
const N = L^3÷4
const m_id = parse(Int, ARGS[1])
#run = parse(Int, ARGS[4])
const τ_C = trunc(Int, (4 * 10^-3 * ξ[m_id]^z) / Δt)
const skip = 10
#maxt = (100 * max(5000, τ_C)) ÷ skip
const maxt = (2000000) ÷ skip
kernel_i = @cuda launch=false gpu_sweep_i(m²[m_id], ϕ, L, 1)
kernel_j = @cuda launch=false gpu_sweep_j(m²[m_id], ϕ, L, 1)
kernel_k = @cuda launch=false gpu_sweep_k(m²[m_id], ϕ, L, 1)
config = launch_configuration(kernel_i.fun)
threads = min(N, config.threads)
blocks = cld(N, threads)
#df = load("IC_20_L_16_id_$(m_id).jld2")
df = load("corr/phi_L_16_m2_$(m_id).jld2") # reuse previous configuration
ϕ .= CuArray(df["ϕ"])
for run in 1:16
thermalize(m²[m_id], ϕ, threads, blocks, 10*maxt)
open("corr/time_L_$(L)_m2_$(m_id)_run_$run.dat","w") do io
for i in 0:maxt-1
thermalize(m²[m_id], ϕ, threads, blocks, skip)
ϕk = Array(fft(ϕ))
Printf.@printf(io, "%i ", skip*i)
for k in 1:5
Printf.@printf(io, "%f %f ", real(ϕk[k,1,1]), imag(ϕk[k,1,1]))
end
Printf.@printf(io, "\n")
if i%100==0
jldsave("corr/phi_L_$(L)_m2_$(m_id).jld2", true; ϕ=Array(ϕ), m2=m²[m_id])
end
flush(io)
end
end
end