-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·282 lines (234 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import copy
import glob
import os
import time
from collections import deque
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from auto_drac_dmc.a2c_ppo_acktr import algo, utils
from auto_drac_dmc.a2c_ppo_acktr.arguments import get_args
from auto_drac_dmc.a2c_ppo_acktr.envs import make_vec_envs
from auto_drac_dmc.a2c_ppo_acktr.model import Policy
from auto_drac_dmc.a2c_ppo_acktr.storage import RolloutStorage
from auto_drac_dmc.evaluation import evaluate
from auto_drac_dmc import dmc2gym
from auto_drac_dmc import data_augs
from baselines import logger
aug_to_func = {
'crop': data_augs.Crop,
'random-conv': data_augs.RandomConv,
'grayscale': data_augs.Grayscale,
'flip': data_augs.Flip,
'rotate': data_augs.Rotate,
'cutout': data_augs.Cutout,
'cutout-color': data_augs.CutoutColor,
'color-jitter': data_augs.ColorJitter,
}
def main():
args = get_args()
if (args.domain_name == 'finger' and args.task_name == 'spin') or \
(args.domain_name == 'walker' and args.task_name == 'walk'):
args.action_repeat = 2
elif (args.domain_name == 'cartpole' and args.task_name == 'swingup'):
args.action_repeat = 8
else:
args.action_repeat = 4
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
log_file = '-{}-{}-{}-{}-dmc{}-rad{}-drac{}-{}-ucb{}-uec{}-sacae{}-gae{}-ld{}-tl{}-hs{}-fs{}-ns{}-np{}-lr{}-ec{}-pe{}-nmb{}-g{}-l{}-s{}'\
.format(args.run_name, args.domain_name, args.task_name, args.train_img_source, \
args.use_pixel_dmc, args.use_rad, args.use_drac, args.aug_type, args.use_ucb, args.ucb_exploration_coef, \
args.use_sacae_network, args.use_gae, args.use_linear_lr_decay, args.use_proper_time_limits, \
args.hidden_size, args.frame_stack, \
args.num_steps, args.num_processes, args.lr, args.entropy_coef, args.ppo_epoch, args.num_mini_batch, \
args.gamma, args.gae_lambda, args.seed)
print("\nLog File: ", log_file)
logger.configure(dir=args.log_dir, format_strs=['csv', 'stdout'], log_suffix=log_file)
log_dir = os.path.expanduser(os.path.join(args.log_dir, "train" + log_file))
eval_log_dir = os.path.expanduser(os.path.join(args.log_dir, "test" + log_file))
utils.cleanup_log_dir(log_dir)
utils.cleanup_log_dir(eval_log_dir)
print("\nTrain Log Dir: ", log_dir)
print("\nTest Log Dir: ", eval_log_dir)
if args.train_img_source == 'natural':
args.train_img_source = 'video'
args.train_resource_files = 'distractors/natural/*mp4'
elif args.train_img_source == 'artificial':
args.train_img_source = 'video'
args.train_resource_files = 'distractors/artificial/*mp4'
else:
args.train_resource_files = None
print("\ntrain backgrounds: ", args.train_resource_files)
envs = make_vec_envs(args, args.seed, args.num_processes,
args.gamma, log_dir, device, False, args.train_img_source,
args.train_resource_files,
args.frame_stack)
actor_critic = Policy(
envs.observation_space.shape,
envs.action_space,
use_sacae_network=args.use_sacae_network,
base_kwargs={'recurrent': args.recurrent_policy, 'hidden_size': args.hidden_size})
actor_critic.to(device)
print(actor_critic)
batch_size = int(args.num_processes * args.num_steps / args.num_mini_batch)
aug_id = data_augs.Identity
if args.use_ucb:
aug_list = [aug_to_func[t](batch_size=batch_size)
for t in list(aug_to_func.keys())]
agent = algo.UCBDrAC(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm,
aug_list=aug_list,
aug_id=aug_id,
aug_coef=args.aug_coef,
num_aug_types=len(list(aug_to_func.keys())),
ucb_exploration_coef=args.ucb_exploration_coef,
ucb_window_length=args.ucb_window_length)
elif args.use_drac:
aug_func = aug_to_func[args.aug_type](batch_size=batch_size)
agent = algo.DrAC(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm,
aug_id=aug_id,
aug_func=aug_func,
aug_coef=args.aug_coef,
env_name=args.env_name)
elif args.use_rad:
aug_func = aug_to_func[args.aug_type](batch_size=batch_size)
agent = algo.RAD(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm,
aug_func=aug_func,
aug_id=aug_id,
aug_prob=args.aug_prob)
else:
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
start = time.time()
num_updates = int(
args.num_env_steps) // args.num_steps // args.num_processes // args.action_repeat
print("\nNum Env Steps {}, Num Policy Steps {}, Num Updates {}"\
.format(args.num_env_steps, int(args.num_env_steps / args.action_repeat), num_updates))
for j in range(num_updates):
if args.use_linear_lr_decay:
# decrease learning rate linearly
utils.update_linear_schedule(
agent.optimizer, j, num_updates,
args.lr)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Obser reward and next obs
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
if args.use_ucb and j > 0:
agent.update_ucb_values(rollouts)
else:
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# Save Model
if (j > 0 and j % args.save_interval == 0
or j == num_updates - 1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.run_name)
try:
os.makedirs(save_path)
except OSError:
pass
torch.save([
actor_critic,
getattr(utils.get_vec_normalize(envs), 'ob_rms', None)
], os.path.join(save_path, "agent-{}".format(j) + log_file + ".pt"))
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
env_num_steps = int(args.action_repeat * total_num_steps)
end = time.time()
print(
"Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n"
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards), dist_entropy, value_loss,
action_loss))
logger.logkv("train/nupdates", j)
logger.logkv("train/total_num_steps", total_num_steps)
logger.logkv("train/num_policy_steps", total_num_steps)
logger.logkv("train/num_env_steps", env_num_steps)
logger.logkv("losses/dist_entropy", dist_entropy)
logger.logkv("losses/value_loss", value_loss)
logger.logkv("losses/action_loss", action_loss)
logger.logkv("train/mean_episode_reward", np.mean(episode_rewards))
logger.logkv("train/median_episode_reward", np.median(episode_rewards))
# artificial_eval_episode_rewards = evaluate(args, eval_log_dir, actor_critic, device, env_type='artificial')
# logger.logkv("test/artificial_mean_episode_reward", np.mean(artificial_eval_episode_rewards))
# logger.logkv("test/artificial_median_episode_reward", np.median(artificial_eval_episode_rewards))
# natural_eval_episode_rewards = evaluate(args, eval_log_dir, actor_critic, device, env_type='natural')
# logger.logkv("test/natural_mean_episode_reward", np.mean(natural_eval_episode_rewards))
# logger.logkv("test/natural_median_episode_reward", np.median(natural_eval_episode_rewards))
logger.dumpkvs()
if __name__ == "__main__":
main()