-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
499 lines (378 loc) · 19.9 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#!/usr/bin/env python
# coding: utf-8
# Test plotting regions from web links
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes # inset plot
from mpl_toolkits.axes_grid1.inset_locator import mark_inset # inset plot
import matplotlib.pyplot as plt # plotting
import matplotlib.cm as cm # colormap functionality
import matplotlib.colors as mcolors # make new colormap
import os # make animation using system call "convert"
import datetime
import numpy as np
import geopandas as gpd
import pandas as pd # read in CSV data
import covid19_fns as c19
class ReportingRegion_shp:
#global covid
data = None
url_head = ["https://ons-inspire.esriuk.com/arcgis/rest/services/Administrative_Boundaries/Local_Authority_Districts_December_2019_Boundaries_UK_BUC/MapServer/0/query?where=UPPER(lad19cd)%20like%20'%25",
"https://ons-inspire.esriuk.com/arcgis/rest/services/Administrative_Boundaries/Counties_December_2019_Boundaries_EN_BFC/MapServer/0/query?where=UPPER(cty19cd)%20like%20'%25",
"https://ons-inspire.esriuk.com/arcgis/rest/services/Administrative_Boundaries/Counties_and_Unitary_Authorities_December_2019_Boundaries_UK_BUC2/MapServer/0/query?where=UPPER(ctyua19cd)%20like%20'%25",
"https://ons-inspire.esriuk.com/arcgis/rest/services/Health_Boundaries/Local_Health_Boards_April_2019_Boundaries_WA_BUC/MapServer/0/query?where=UPPER(lhb19cd)%20like%20'%25"]
url_key = ['lad19cd', 'cty19cd', 'ctyua19cd', 'lhb19cd']
url_nam = ['lad19nm', 'cty19nm', 'ctyua19cd', 'lhb19nm']
url_tail = "%25'&outFields=*&outSR=4326&f=json"
def __init__(self, ONScode):
self.ONScode = str(ONScode)
#self.date_time = date_time
#self.value = np.NaN
# load ONScode geometry
if self.ONScode[0].upper() == 'S':
file = 'DATA/SG_NHS_HealthBoards_2019/SG_NHS_HealthBoards_2019.shp'
shp = gpd.read_file(file).to_crs("EPSG:4326") # Lots of region (in degrees)
self.shp = shp[ shp['HBCode'] == ONScode ] # extract one region
# ONS code region name
#self.name = self.shp.loc[ self.shp['HBCode'] == ONScode ].HBName.values[0]
self.name = self.shp.HBName.values[0]
elif self.ONScode[0].upper() == 'N':
file = 'DATA/OSNI_Open_Data__Largescale_Boundaries__Local_Government_Districts_2012/OSNI_Open_Data__Largescale_Boundaries__Local_Government_Districts_2012.shp' # https://www.opendatani.gov.uk/dataset/osni-open-data-largescale-boundaries-local-government-districts-2012
shp = gpd.read_file(file).to_crs("EPSG:4326") # Lots of region (in degrees)
self.shp = shp[ shp['LGDCode'] == ONScode ] # extract one region
# ONS code region name
#self.name = self.shp.loc[ self.shp['LGDCode'] == ONScode ].LGDNAME.values[0]
self.name = self.shp.LGDCode.values[0]
else: # load from url API query
url = ReportingRegion_shp.url_head[0] + self.ONScode + ReportingRegion_shp.url_tail
print(url)
self.shp = gpd.read_file(url)
url_count = 0
while self.shp.empty:
url_count = url_count + 1
print('url_count: ',url_count)
url=ReportingRegion_shp.url_head[url_count] + self.ONScode + ReportingRegion_shp.url_tail
self.shp = gpd.read_file(url).to_crs("EPSG:4326") # degrees
if url_count == len(ReportingRegion_shp.url_head ):
print('count: {}, ONS code: {} not found'.format(url_count, self.ONScode))
# ONS code region name
self.name = self.shp[ReportingRegion_shp.url_nam[url_count]].values[0]
self.shp.name = self.name
self.shp.ONScode = self.ONScode
def plot(self):
self.shp.boundary.plot()
plt.title(self.name)
plt.show()
def print(self):
print(f"{self.ONScode} : {self.name}")
def add_value(data, region, date_time):
"""
r[ONScode] = add_value(covid, r[ONScode] , date_time)
"""
region.value = np.NaN
# Find the valie for the date_time and ONScode
region.value = data.loc[date_time, region.ONScode]
if type(region.value) is str:
region.value = int(region.value)
region.shp['value'] = region.value # add a new column so plotting colour works
return region
def load_tomwhite_covid_new():
"""
load in CSV data for confirmed cases per day and region.
load data from TomWhite GitHub:
Date Country AreaCode Area TotalCases
2020-03-05 England E09000002 Barking and Dagenham 0
Pivot the data to rows of placenames and columns of dates
"""
url = 'https://raw.githubusercontent.com/tomwhite/covid-19-uk-data/master/data/covid-19-cases-uk.csv'
print('Load COVID-19 data from %s'%url)
mydateparser = lambda x: datetime.datetime.strptime(x, "%Y-%m-%d")
covid_raw = pd.read_csv(url,index_col=3,parse_dates=[0], date_parser=mydateparser)
covid_raw['AreaCode'].replace('', np.nan, inplace=True)
covid_raw.dropna(subset=['AreaCode'], inplace=True)
#covid = covid.reset_index()
covid = covid_raw.pivot(index='Date', columns='AreaCode', values='TotalCases' )
#covid = covid.pivot(index='Date', columns='Area', values='TotalCases' )
"""
## Find rows where NaNs are lurking
is_NaN = covid.isnull()
row_has_NaN = is_NaN.any(axis=1); rows_with_NaN = covid[row_has_NaN]
rows_with_NaN
"""
return covid_raw, covid
def make_colormap(type='log', N=11):
"""
make a suitable colorbar
If linear
white = 0, 5 darkening blue then 5 darkening red. Then set_over=black.
11 color blocks + one over block
If log
Useage:
my_cmap = make_colormap() # returns a linear colormap for 11 colours
"""
# ##
# Make a new colormap by adding colours together
blu_cmap=plt.cm.get_cmap('Blues', (N+1) // 2 )
red_cmap=plt.cm.get_cmap('Reds', (N+1) // 2 )
pla_cmap=plt.cm.get_cmap('plasma', N+1 )
rnb_cmap=plt.cm.get_cmap('rainbow', N+1 )
white_pal = np.array([[1., 1., 1., 1.]])
#grey_pal = np.array([[.8, .8, .8, 1.]])
## stack colors together: Blue and Red
#colors_new = np.vstack(( white_pal, blu_cmap(np.linspace(0.25, 0.75, 5)), red_cmap(np.linspace(0.25, 1, 5)) ))
#colors_new = np.vstack(( white_pal, pla_cmap(np.linspace(1, 0, N)) ))
#colors_new = np.vstack(( white_pal, rnb_cmap(np.linspace(0, 1, N)) ))
colors_new = np.vstack(( rnb_cmap(np.linspace(0, 1, N)) ))
# create new colormap
my_cmap = mcolors.ListedColormap( colors_new )
my_cmap.set_over('black')
my_cmap.set_under('gray')
return my_cmap
def find_max_in_region(geodf,region):
"""
Find the largest cases value within a specified region and days list
region_Lon = {'name': 'London', 'xlim':[-0.6,0.5], 'ylim':[51.2,51.8], 'date_loc':[0.2,51.75] }
maxval = find_max_in_region(geodf,region_Lon,days)
"""
from shapely.geometry import Polygon # Find max in region
ymin,ymax = region['ylim']
xmin,xmax = region['xlim']
lat_point_list = [ymin, ymax, ymax, ymin, ymin]
lon_point_list = [xmin, xmin, xmax, xmax, xmin]
polygon_geom = Polygon(zip(lon_point_list, lat_point_list))
# Define the region's boundary as a geodataframe (Coodinate Reference System in DEGREES)
boundary_geodf = gpd.GeoDataFrame(index=[0], crs="EPSG:4326", geometry=[polygon_geom])
# Now find the small polygons within this boundary
region_mask = geodf.within(boundary_geodf.loc[0, 'geometry'])
region_geodf = geodf.loc[region_mask]
#print(boundary.geometry)
return region_geodf.value.max() # Max over region
def snapshot_plot(geodf_final,geodf,date_time,region,maxval=20.):
"""
NEED TO UPDATE
Draw and save a map frame for a given day and region.
Example usage:
region_Lon = {'name': 'London', 'xlim':[-0.6,0.5], 'ylim':[51.2,51.8], 'date_loc':[0.2,51.75] }
date_time = datetime.datetime(2020,3,5)
maxval = 10.
single_frame_plot(geodf,date_time,region_Lon,maxval)
--> FIGURES/COVID-19_London_13.png
"""
#datestr = daystr + " March"
datestr = date_time.strftime("%a %d %b") # datetime
daystr = date_time.strftime("%d")
datestrfname = date_time.strftime("%Y%m%d") # monotonic increasing number for days
#sourcestr = 'data source: www.gov.uk/government/publications/coronavirus-covid-19-number-of-cases-in-england'
sourcePHEstr = 'data source: www.gov.uk/government/publications/covid-19-track-coronavirus-cases'
sourcePHWstr = 'phw.nhs.wales/news/public-health-wales-statement-on-novel-coronavirus-outbreak'
sourceGoogstr = 'compiled: www.lpchong.com/post/covid19-confirmed-cases-in-england-by-upper-tier-local-authority-daily'
sourceGITstr = 'code: github.com/jpolton/COVID-19'
sourceDATAstr = 'data: github.com/tomwhite/covid-19-uk-data'
# Set the font dictionaries (for plot title and axis titles)
kw_source_label = {'fontname':'Arial', 'size':'6', 'color':'black', 'weight':'normal',
'horizontalalignment': 'right', 'verticalalignment':'top'}
kw_sourcegit_label = {'fontname':'Arial', 'size':'6', 'color':'black', 'weight':'normal',
'horizontalalignment': 'left', 'verticalalignment':'top'}
kw_date_label = {'fontname':'Arial', 'size':'16', 'color':'black', 'weight':'bold',
'horizontalalignment': 'left', 'verticalalignment':'bottom'}
# Make a colormap with ticks and labels for the given max value. Using a logscale
#my_colormap, my_ticks, my_ticklabels = make_colormap2(maxval)
N = 13 # Number of rectangular colorbar elements
fig, ax = plt.subplots(1, 1) # dummy figure
plt.rcParams['figure.figsize'] = (10.0, 6.0) # dummy figure
fig, ax = plt.subplots(1, 1)
plt.rcParams['figure.figsize'] = (10.0, 6.0)
# plot the boundaries from a static datagrame (from final date)
geodf_final.boundary.plot( ax=ax, linewidth=0.25, color='k' ) # make boundaries grey when there are more reported areas
colorbar_extend_str = 'min'
geodf.plot(column='value', ax=ax, legend=False,
missing_kwds={'color': 'lightgray'},
cmap=make_colormap(type='log',N=N),
norm=mcolors.LogNorm(vmin=1, vmax=maxval) )
# Edit and present colorbar
axx=plt.gca()
if region['name'] == 'London':
orientation_str='horizontal'
titlestr = 'COVID-19 total confirmed cases for London by local authority'
elif region['name'] == 'Wales':
titlestr = 'COVID-19 total confirmed cases for Wales by reporting region'
orientation_str='vertical'
elif region['name'] == 'Scotland':
titlestr = 'COVID-19 total confirmed cases for Scotland by Health Board'
orientation_str='vertical'
elif region['name'] == 'NW':
#titlestr = 'COVID-19 total confirmed cases for NW England and Wales by local authority'
titlestr = 'COVID-19 total confirmed cases for NW England by local authority'
orientation_str='vertical'
else:
#titlestr = 'COVID-19 total confirmed cases for England and Wales by local authority'
titlestr = 'COVID-19 total confirmed cases by reporting district'
orientation_str='vertical'
# Find base such that int(base**(N-1) = maxval
base = np.e**(np.log(maxval) /(N))
ticks = [int(base**i) for i in range(N+2) ]
ticks = list(set(ticks))
ticks.sort()
ticks = ticks[0:N+1]
print('Ticks: ',ticks)
cb=plt.colorbar(axx.collections[1], extend='max',
#norm=mcolors.LogNorm(vmin=0, vmax=maxval),
ticks=ticks,
boundaries=ticks,
spacing='proportional',
orientation=orientation_str)
cb.set_ticklabels( [str(i) for i in ticks] )
ax.set_xlim(region['xlim'])
ax.set_ylim(region['ylim'])
ax.set_title(titlestr)
ax.text(region['date_loc'][0], region['date_loc'][1], datestr, **kw_date_label)
#ax.text(region['xlim'][1], region['ylim'][0], sourcePHEstr, **kw_source_label )
#ax.text(region['xlim'][1], region['ylim'][0], sourcePHEstr+'\n'+sourceGoogstr, **kw_source_label )
ax.text(region['xlim'][1], region['ylim'][0], sourceDATAstr, **kw_source_label )
ax.text(region['xlim'][0], region['ylim'][0], sourceGITstr, **kw_sourcegit_label )
ax.axis('off')
if region['name'] == 'UK': # London zoom
axins1 = zoomed_inset_axes(ax, zoom=4, bbox_to_anchor=(0,0.2,1,1),bbox_transform=ax.transAxes,loc='center right', axes_kwargs={'xticks':[], 'yticks':[]}) # shift anchor so inset is up a bit.
axins2 = zoomed_inset_axes(ax, zoom=1, loc='upper left', axes_kwargs={'xticks':[], 'yticks':[]}) # shetland
#axins = zoomed_inset_axes(ax, 4, loc='center right')
geodf_lon = geodf[geodf['lad19cd'].str.contains("E09", na=False)] # datafrane for Greater London
geodf_she = geodf_final[geodf_final['HBCode'].str.contains("S08000026", na=False)] # datafrane for Shetland
minx1,miny1,maxx1,maxy1 = geodf_lon.geometry.total_bounds
minx2,miny2,maxx2,maxy2 = geodf_she.geometry.total_bounds
axins1.set_xlim(minx1, maxx1)
axins1.set_ylim(miny1, maxy1)
axins2.set_xlim(minx2, maxx2)
axins2.set_ylim(miny2, maxy2)
mark_inset(ax, axins1, loc1=2, loc2=4, fc="none", ec="0.5")
#mark_inset(ax, axins2, fc="none", ec="0.5")
## Plot zoom window
geodf_final.boundary.plot( ax=axins1, linewidth=0.1, color='k' ) # make boundaries grey when there are more reported areas
geodf_final.boundary.plot( ax=axins2, linewidth=0.1, color='k' ) # make boundaries grey when there are more reported areas
#r['S08000026'].shp.plot(ax= axins, edgecolor='black', color='white' )
geodf_lon.plot(column='value', ax=axins1, legend=False,
missing_kwds={'color': 'lightgray'},
cmap=make_colormap(type='log',N=N),
norm=mcolors.LogNorm(vmin=1, vmax=maxval) )
geodf_she.plot(column='value', ax=axins2, legend=False,
missing_kwds={'color': 'lightgray'},
cmap=make_colormap(type='log',N=N),
norm=mcolors.LogNorm(vmin=1, vmax=maxval) )
plt.setp(axins1.get_xticklabels(), visible=False)
plt.setp(axins1.get_yticklabels(), visible=False)
plt.setp(axins2.get_xticklabels(), visible=False)
plt.setp(axins2.get_yticklabels(), visible=False)
#fig.tight_layout()
fname = 'FIGURES/COVID-19_'+region['name']+'_'+datestrfname+'.png'
print('Saving %s'%fname)
plt.savefig(fname, dpi=150)
return
def find_the_ONScodes_by_country(country_lst,data_raw):
"""
INPUT:
country_lst = ['England', 'Wales']. List of strings, name of country (string) in database.
data - pandas table of data (Orgin: TomWhite. URL: https://github.com/tomwhite/covid-19-uk-data/blob/master/data/covid-19-cases-uk.csv)
OUTPUT:
ONScdes - array of ONScode strings
ONScodes = find_the_ONScodes_by_country('Scotland',covid_raw)
"""
count = 0
for country_str in country_lst:
count = count + 1
codes = covid_raw.loc[covid_raw['Country'] == country_str].AreaCode.unique()
if count == 1:
ONScodes = codes
else:
#ONScodes.append(codes)
ONScodes = np.hstack((codes,ONScodes))
return ONScodes
def daterange(start_date, end_date):
for n in range(int ((end_date - start_date).days) + 1):
yield end_date - datetime.timedelta(n)
##########################################################################################################################
## Now do the main routine stuff
if __name__ == '__main__':
# # Define Regions for plotting
region_UK = {'name': 'UK', 'country_lst':['England','Wales','Northern Ireland','Scotland'],
'xlim':[-9,2], 'ylim':[50,60], 'date_loc':[-0.5, 59.] }
region_Eng = {'name': 'EnglandWales', 'country_lst':['England','Wales'],
'xlim':[-6,2], 'ylim':[50,56], 'date_loc':[0, 55.5] }
region_NW = {'name': 'NW', 'country_lst':['England','Wales'],
'xlim':[-3.4,-1.9], 'ylim':[52.8,53.9], 'date_loc':[-3.35, 53.8] }
region_Lon = {'name': 'London', 'country_lst':['England'],
'xlim':[-0.6,0.5], 'ylim':[51.3,51.7], 'date_loc':[0.25,51.65] }
region_Sco = {'name': 'Scotland', 'country_lst':['Scotland'],
'xlim':[-8,0.], 'ylim':[54,61], 'date_loc':[-7.95,59.5] }
region_Wal = {'name': 'Wales', 'country_lst':['Wales'],
'xlim':[-5.5,-2.5], 'ylim':[51.25,53.5], 'date_loc':[-5.45,53.4] }
region_NI = {'name': 'Northern Ireland', 'country_lst':['Northern Ireland'],
'xlim':[-9,-5], 'ylim':[54,55.5], 'date_loc':[-8.95, 55.4] }
regions = [region_Eng, region_NW, region_Lon, region_Sco]
regions = [ region_Eng]
regions = [ region_NI]
regions = [ region_UK]
# Define the date range. Use 2-digit strings.
# These will be the column labels for the case data
# The COVID-19 source data has labels of the form 'dd/mm'
#days = ['07', '08', '09', '10', '11', '12', '13', '14','15', '16']
country_lst = [region['country_lst'] for region in regions]
if len(regions) > 1:
print('Need to update the country ONScodes are sought for if plotting multiple regions')
#days = [datetime.datetime(2020, 3, i) for i in range(7,31+1)]
#days = [datetime.datetime(2020, 3, i) for i in range(28,31+1)]
days = daterange(datetime.datetime(2020, 3, 7), datetime.datetime(2020, 4, 3) )
# load the raw COVID19 data
covid_raw, covid = load_tomwhite_covid_new()
# Extra the ONScodes for the region of interest
ONScodes = find_the_ONScodes_by_country(regions[0]['country_lst'],covid_raw)
if(0):
# Define the polygon regions as class instanaces
r = dict() # Store all the regions in a dictionary
for i in range( len(ONScodes) ):
ONScode = ONScodes[i]
print('count: {}, ONScode: {}'.format(i,ONScode))
r[ONScode] = ReportingRegion_shp( ONScode )
#date_time = datetime.datetime(2020,3,30)
# REVIEW:
df_final = None
for date_time in days: # reverse order
gdf = None
df = None
for i in range( len(ONScodes) ):
ONScode = ONScodes[i]
#if name[0] != 'S': # Don't have the shape files for Scotland
#print('count: {}, ONScode: {}'.format(i,ONScode))
#r[ONScode] = ReportingRegion_shp( ONScode )
r[ONScode] = add_value(covid, r[ONScode] , date_time)
#r1.shp.plot(ax = ax, column='value' , legend=False, cmap = 'jet')
r[ONScode].print()
print('count:',i)
if gdf is None:
gdf = r[ONScode].shp
else:
gdf = gpd.GeoDataFrame( pd.concat([gdf, r[ONScode].shp]), crs="EPSG:4326")
# Take rows where value is not NaN
df = gdf[gdf['value'].notna()]
#df.reset_index(inplace=True)
#df = df.to_crs("EPSG:4326") # degrees
# Save the first (last) datafraem to plot the boundaries for all frames.
try:
if df_final == None:
df_final = df
except:
pass
for region in regions:
maxval = find_max_in_region(df,region) # Find the max value to construct the colorscale
print('maxval',maxval)
maxval = max(maxval, 10)
try:
snapshot_plot(df_final,df,date_time,region,maxval)
except:
pass
#plt.show()
plt.close('all')
if len(days)>6:
print('My imageMagick is broken, so to make an animated gif copy and paste:')
print('convert -geometry 2048x2048 -loop 0 -delay 100 COVID-19_%s_??.png COVID-19_%s.gif'%(region['name'],region['name']))
print("convert -geometry 2048x2048 -loop 0 -delay 100 `ls -t COVID-19_UK*png` COVID-19_UK.gif")
#covid = covid.pivot(index='Area', columns='Date', values='TotalCases' )
# # Make regional plots for each day and each region
#plot_panel(datetime.datetime(2020,3,8))
#plot_frames_to_file(geodf,region_Eng,days)