-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
140 lines (115 loc) · 3.41 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include <math.h>
#include <stdlib.h>
#include <iostream>
class vec3 {
public:
vec3() {}
vec3(double e0, double e1, double e2) {e[0] = e0; e[1] = e1; e[2] = e2;}
inline double x() const {return e[0];}
inline double y() const {return e[1];}
inline double z() const {return e[2];}
inline double r() const {return e[0];}
inline double g() const {return e[1];}
inline double b() const {return e[2];}
inline const vec3& operator+() const {return *this;}
inline vec3 operator-() const {return vec3(-e[0], -e[1], -e[2]);}
inline double operator[](int i) const {return e[i];}
inline double& operator[](int i) {return e[i];}
inline vec3& operator+=(const vec3& v2);
inline vec3& operator-=(const vec3& v2);
inline vec3& operator*=(const vec3& v2);
inline vec3& operator/=(const vec3& v2);
inline vec3& operator*=(const double t);
inline vec3& operator/=(const double t);
inline double length() const {
return sqrt(e[0]*e[0] + e[1]*e[1] + e[2]*e[2]);
}
inline double squaredLength() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
inline void makeUnitVector();
double e[3];
};
inline std::istream& operator>>(std::istream &is, vec3 &t) {
is >> t.e[0] >> t.e[1] >> t.e[2];
return is;
}
inline std::ostream& operator<<(std::ostream &os, const vec3 &t) {
os << t.e[0] << " " << t.e[1] << " " << t.e[2];
return os;
}
inline void vec3::makeUnitVector() {
double k = 1.0 / sqrt(e[0]*e[0] + e[1]*e[1] + e[2]*e[2]);
e[0] *= k;
e[1] *= k;
e[2] *= k;
}
inline vec3 operator+(const vec3 &v1, const vec3 &v2) {
return vec3(v1.e[0] + v2.e[0], v1.e[1] + v2.e[1], v1.e[2] + v2.e[2]);
}
inline vec3 operator-(const vec3 &v1, const vec3 &v2) {
return vec3(v1.e[0] - v2.e[0], v1.e[1] - v2.e[1], v1.e[2] - v2.e[2]);
}
inline vec3 operator*(const vec3 &v1, const vec3 &v2) {
return vec3(v1.e[0] * v2.e[0], v1.e[1] * v2.e[1], v1.e[2] * v2.e[2]);
}
inline vec3 operator/(const vec3 &v1, const vec3 &v2) {
return vec3(v1.e[0] / v2.e[0], v1.e[1] / v2.e[1], v1.e[2] / v2.e[2]);
}
inline vec3 operator*(double t, const vec3 &v) {
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t) {
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator/(const vec3 &v, double t) {
return vec3(v.e[0]/t, v.e[1]/t, v.e[2]/t);
}
inline double dot(const vec3 &v1, const vec3 &v2) {
return v1.e[0] * v2.e[0] + v1.e[1] * v2.e[1] + v1.e[2] * v2.e[2];
}
inline vec3 cross(const vec3 &v1, const vec3 &v2) {
return vec3(v1.e[1] * v2.e[2] - v2.e[1] * v1.e[2],
-(v1.e[0] * v2.e[2] - v2.e[0] * v1.e[2]),
v1.e[0] * v2.e[1] - v2.e[0] * v1.e[1]);
}
inline vec3& vec3::operator+=(const vec3 &v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
inline vec3& vec3::operator-=(const vec3 &v) {
e[0] -= v.e[0];
e[1] -= v.e[1];
e[2] -= v.e[2];
return *this;
}
inline vec3& vec3::operator*=(const vec3 &v) {
e[0] *= v.e[0];
e[1] *= v.e[1];
e[2] *= v.e[2];
return *this;
}
inline vec3& vec3::operator/=(const vec3 &v) {
e[0] /= v.e[0];
e[1] /= v.e[1];
e[2] /= v.e[2];
return *this;
}
inline vec3& vec3::operator*=(const double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
inline vec3& vec3::operator/=(const double t) {
double k = 1.0/t;
e[0] *= k;
e[1] *= k;
e[2] *= k;
return *this;
}
inline vec3 unitVector(vec3 v) {
return v / v.length();
}