forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
72 lines (59 loc) · 2.24 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
import csv
import glob
import io
import os
import shutil
import tarfile
import tempfile
import numpy
import chainer
from src.nlp_utils import transform_to_array, split_text, normalize_text, make_vocab
URL_STSA_BASE = 'https://raw.githubusercontent.com/harvardnlp/sent-conv-torch/master/data/'
def download_dataset(name):
files = [name + suff for suff in ['.train', '.test']]
file_paths = []
for f_name in files:
url = os.path.join(URL_STSA_BASE, f_name)
path = chainer.dataset.cached_download(url)
file_paths.append(path)
return file_paths
def get_stsa_dataset(file_paths, vocab=None, shrink=1,
char_based=False, seed=777):
train = read_dataset(
file_paths[0], shrink=shrink, char_based=char_based)
if len(file_paths) == 2:
test = read_dataset(
file_paths[1], shrink=shrink, char_based=char_based)
else:
numpy.random.seed(seed)
alldata = numpy.random.permutation(train)
train = alldata[:-len(alldata) // 10]
test = alldata[-len(alldata) // 10:]
if vocab is None:
vocab = make_vocab(train)
train = transform_to_array(train, vocab)
test = transform_to_array(test, vocab)
return train, test, vocab
def read_dataset(path, shrink=1, char_based=False):
dataset = []
with io.open(path, encoding='utf-8', errors='ignore') as f:
for i, l in enumerate(f):
if i % shrink != 0 or not len(l.strip()) >= 3:
continue
label, text = l.strip().split(None, 1)
label = int(label)
tokens = split_text(normalize_text(text), char_based)
dataset.append((tokens, label))
return dataset