forked from pchalamet/Martinez
-
Notifications
You must be signed in to change notification settings - Fork 0
/
martinez.cpp
352 lines (321 loc) · 13.2 KB
/
martinez.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/***************************************************************************
* Developer: Francisco Martínez del Río (2011) *
* Version: 1.4.1 *
* *
* This is a public domain program *
***************************************************************************/
#include "martinez.h"
#include "connector.h"
#include <algorithm>
#include <iostream>
#include <cassert>
#include <cstdlib>
// #define _DEBUG_ // uncomment this line if you want to debug the computation of the boolean operation
// This function is intended for debugging purposes
void Martinez::print (SweepEvent& e)
{
const char* namesEventTypes[] = { " (NORMAL) ", " (NON_CONTRIBUTING) ", " (SAME_TRANSITION) ", " (DIFFERENT_TRANSITION) " };
cout << " Point: " << e.p << " Other point: " << e.other->p << (e.left ? " (Left) " : " (Right) ")
<< (e.inside ? " (Inside) " : " (Outside) ") << (e.inOut ? " (In-Out) " : " (Out-In) ") << "Type: "
<< namesEventTypes[e.type] << " Polygon: " << (e.pl == SUBJECT ? " (SUBJECT)" : " (CLIPPING)") << endl;
}
// Compare two sweep events
// Return true means that e1 is placed at the event queue after e2, i.e,, e1 is processed by the algorithm after e2
bool Martinez::SweepEventComp::operator() (SweepEvent* e1, SweepEvent* e2) {
if (e1->p.x > e2->p.x) // Different x-coordinate
return true;
if (e2->p.x > e1->p.x) // Different x-coordinate
return false;
if (e1->p != e2->p) // Different points, but same x-coordinate. The event with lower y-coordinate is processed first
return e1->p.y > e2->p.y;
if (e1->left != e2->left) // Same point, but one is a left endpoint and the other a right endpoint. The right endpoint is processed first
return e1->left;
// Same point, both events are left endpoints or both are right endpoints. The event associate to the bottom segment is processed first
return e1->above (e2->other->p);
}
// e1 and a2 are the left events of line segments (e1->p, e1->other->p) and (e2->p, e2->other->p)
bool Martinez::SegmentComp::operator() (SweepEvent* e1, SweepEvent* e2) {
if (e1 == e2)
return false;
if (signedArea (e1->p, e1->other->p, e2->p) != 0 || signedArea (e1->p, e1->other->p, e2->other->p) != 0) {
// Segments are not collinear
// If they share their left endpoint use the right endpoint to sort
if (e1->p == e2->p)
return e1->below (e2->other->p);
// Different points
SweepEventComp comp;
if (comp (e1, e2)) // has the line segment associated to e1 been inserted into S after the line segment associated to e2 ?
return e2->above (e1->p);
// The line segment associated to e2 has been inserted into S after the line segment associated to e1
return e1->below (e2->p);
}
// Segments are collinear. Just a consistent criterion is used
if (e1->p == e2->p)
return e1 < e2;
SweepEventComp comp;
return comp (e1, e2);
}
void Martinez::compute (BoolOpType op, Polygon& result)
{
// Test 1 for trivial result case
if (subject.ncontours () * clipping.ncontours () == 0) { // At least one of the polygons is empty
if (op == DIFFERENCE)
result = subject;
if (op == UNION || op == XOR)
result = (subject.ncontours () == 0) ? clipping : subject;
return;
}
// Test 2 for trivial result case
Point minsubj, maxsubj, minclip, maxclip;
subject.boundingbox (minsubj, maxsubj);
clipping.boundingbox (minclip, maxclip);
if (minsubj.x > maxclip.x || minclip.x > maxsubj.x || minsubj.y > maxclip.y || minclip.y > maxsubj.y) {
// the bounding boxes do not overlap
if (op == DIFFERENCE)
result = subject;
if (op == UNION || op == XOR) {
result = subject;
for (unsigned int i = 0; i < clipping.ncontours (); i++) {
result.push_back (Contour ());
result.back () = clipping.contour (i);
}
}
return;
}
// Boolean operation is not trivial
// Insert all the endpoints associated to the line segments into the event queue
for (unsigned int i = 0; i < subject.ncontours (); i++)
for (unsigned int j = 0; j < subject.contour (i).nvertices (); j++)
processSegment(subject.contour (i).segment (j), SUBJECT);
for (unsigned int i = 0; i < clipping.ncontours (); i++)
for (unsigned int j = 0; j < clipping.contour (i).nvertices (); j++)
processSegment(clipping.contour (i).segment (j), CLIPPING);
Connector connector; // to connect the edge solutions
set<SweepEvent*, SegmentComp> S; // Status line
set<SweepEvent*, SegmentComp>::iterator it, sli, prev, next;
SweepEvent* e;
const double MINMAXX = std::min (maxsubj.x, maxclip.x); // for optimization 1
while (!eq.empty()) {
e = eq.top ();
eq.pop ();
#ifdef _DEBUG_
cout << "Process event: "; print (*e);
#endif
// optimization 1
if ((op == INTERSECTION && (e->p.x > MINMAXX)) || (op == DIFFERENCE && e->p.x > maxsubj.x)) {
connector.toPolygon (result);
return;
}
if ((op == UNION && (e->p.x > MINMAXX))) {
// add all the non-processed line segments to the result
if (!e->left)
connector.add (e->segment ());
while (!eq.empty()) {
e = eq.top();
eq.pop();
if (!e->left)
connector.add (e->segment ());
}
connector.toPolygon (result);
return;
}
// end of optimization 1
if (e->left) { // the line segment must be inserted into S
e->poss = it = S.insert(e).first;
next = prev = it;
(prev != S.begin()) ? --prev : prev = S.end();
// Compute the inside and inOut flags
if (prev == S.end ()) { // there is not a previous line segment in S?
e->inside = e->inOut = false;
} else if ((*prev)->type != NORMAL) {
if (prev == S.begin ()) { // e overlaps with prev
e->inside = true; // it is not relevant to set true or false
e->inOut = false;
} else { // the previous two line segments in S are overlapping line segments
sli = prev;
sli--;
if ((*prev)->pl == e->pl) {
e->inOut = !(*prev)->inOut;
e->inside = !(*sli)->inOut;
} else {
e->inOut = !(*sli)->inOut;
e->inside = !(*prev)->inOut;
}
}
} else if (e->pl == (*prev)->pl) { // previous line segment in S belongs to the same polygon that "e" belongs to
e->inside = (*prev)->inside;
e->inOut = ! (*prev)->inOut;
} else { // previous line segment in S belongs to a different polygon that "e" belongs to
e->inside = ! (*prev)->inOut;
e->inOut = (*prev)->inside;
}
#ifdef _DEBUG_
cout << "Status line after insertion: " << endl;
for (set<SweepEvent*, SegmentComp>::const_iterator it2 = S.begin(); it2 != S.end(); it2++)
print (**it2);
#endif
// Process a possible intersection between "e" and its next neighbor in S
if ((++next) != S.end())
possibleIntersection(e, *next);
// Process a possible intersection between "e" and its previous neighbor in S
if (prev != S.end ())
possibleIntersection(*prev, e);
} else { // the line segment must be removed from S
next = prev = sli = e->other->poss; // S.find (e->other);
// Get the next and previous line segments to "e" in S
++next;
(prev != S.begin()) ? --prev : prev = S.end();
// Check if the line segment belongs to the Boolean operation
switch (e->type) {
case (NORMAL):
switch (op) {
case (INTERSECTION):
if (e->other->inside)
connector.add (e->segment ());
break;
case (UNION):
if (!e->other->inside)
connector.add (e->segment ());
break;
case (DIFFERENCE):
if (((e->pl == SUBJECT) && (!e->other->inside)) || (e->pl == CLIPPING && e->other->inside))
connector.add (e->segment ());
break;
case (XOR):
connector.add (e->segment ());
break;
}
break;
case (SAME_TRANSITION):
if (op == INTERSECTION || op == UNION)
connector.add (e->segment ());
break;
case (DIFFERENT_TRANSITION):
if (op == DIFFERENCE)
connector.add (e->segment ());
break;
}
// delete line segment associated to e from S and check for intersection between the neighbors of "e" in S
S.erase (sli);
if (next != S.end() && prev != S.end())
possibleIntersection (*prev, *next);
}
#ifdef _DEBUG_
cout << "Status line after processing intersections: " << endl;
for (set<SweepEvent*, SegmentComp>::const_iterator it2 = S.begin(); it2 != S.end(); it2++)
print (**it2);
cout << endl;
#endif
}
connector.toPolygon (result);
}
void Martinez::processSegment (const Segment& s, PolygonType pl)
{
if (s.begin () == s.end ()) // if the two edge endpoints are equal the segment is dicarded
return; // in the future this can be done as preprocessing to avoid "polygons" with less than 3 edges
SweepEvent* e1 = storeSweepEvent (SweepEvent(s.begin(), true, pl, 0));
SweepEvent* e2 = storeSweepEvent (SweepEvent(s.end(), true, pl, e1));
e1->other = e2;
if (e1->p.x < e2->p.x) {
e2->left = false;
} else if (e1->p.x > e2->p.x) {
e1->left = false;
} else if (e1->p.y < e2->p.y) { // the line segment is vertical. The bottom endpoint is the left endpoint
e2->left = false;
} else {
e1->left = false;
}
eq.push (e1);
eq.push (e2);
}
void Martinez::possibleIntersection (SweepEvent* e1, SweepEvent* e2)
{
// if ((e1->pl == e2->pl) ) // you can uncomment these two lines if self-intersecting polygons are not allowed
// return false;
Point ip1, ip2; // intersection points
int nintersections;
if (!(nintersections = findIntersection(e1->segment (), e2->segment (), ip1, ip2)))
return;
if ((nintersections == 1) && ((e1->p == e2->p) || (e1->other->p == e2->other->p)))
return; // the line segments intersect at an endpoint of both line segments
if (nintersections == 2 && e1->pl == e2->pl) { // the line segments overlap, but they belong to the same polygon
std::cerr << "A polygon has overlapping edges. Sorry, but the program does not work yet with this kind of polygon\n";
exit (1);
}
// The line segments associated to e1 and e2 intersect
nint += nintersections;
if (nintersections == 1) {
if (e1->p != ip1 && e1->other->p != ip1) // if ip1 is not an endpoint of the line segment associated to e1 then divide "e1"
divideSegment (e1, ip1);
if (e2->p != ip1 && e2->other->p != ip1) // if ip1 is not an endpoint of the line segment associated to e2 then divide "e2"
divideSegment (e2, ip1);
return;
}
// The line segments overlap
vector<SweepEvent *> sortedEvents;
if (e1->p == e2->p) {
sortedEvents.push_back (0);
} else if (sec (e1, e2)) {
sortedEvents.push_back (e2);
sortedEvents.push_back (e1);
} else {
sortedEvents.push_back (e1);
sortedEvents.push_back (e2);
}
if (e1->other->p == e2->other->p) {
sortedEvents.push_back (0);
} else if (sec (e1->other, e2->other)) {
sortedEvents.push_back (e2->other);
sortedEvents.push_back (e1->other);
} else {
sortedEvents.push_back (e1->other);
sortedEvents.push_back (e2->other);
}
if (sortedEvents.size () == 2) { // are both line segments equal?
e1->type = e1->other->type = NON_CONTRIBUTING;
e2->type = e2->other->type = (e1->inOut == e2->inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION;
return;
}
if (sortedEvents.size () == 3) { // the line segments share an endpoint
sortedEvents[1]->type = sortedEvents[1]->other->type = NON_CONTRIBUTING;
if (sortedEvents[0]) // is the right endpoint the shared point?
sortedEvents[0]->other->type = (e1->inOut == e2->inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION;
else // the shared point is the left endpoint
sortedEvents[2]->other->type = (e1->inOut == e2->inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION;
divideSegment (sortedEvents[0] ? sortedEvents[0] : sortedEvents[2]->other, sortedEvents[1]->p);
return;
}
if (sortedEvents[0] != sortedEvents[3]->other) { // no line segment includes totally the other one
sortedEvents[1]->type = NON_CONTRIBUTING;
sortedEvents[2]->type = (e1->inOut == e2->inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION;
divideSegment (sortedEvents[0], sortedEvents[1]->p);
divideSegment (sortedEvents[1], sortedEvents[2]->p);
return;
}
// one line segment includes the other one
sortedEvents[1]->type = sortedEvents[1]->other->type = NON_CONTRIBUTING;
divideSegment (sortedEvents[0], sortedEvents[1]->p);
sortedEvents[3]->other->type = (e1->inOut == e2->inOut) ? SAME_TRANSITION : DIFFERENT_TRANSITION;
divideSegment (sortedEvents[3]->other, sortedEvents[2]->p);
}
void Martinez::divideSegment (SweepEvent* e, const Point& p)
{
// "Right event" of the "left line segment" resulting from dividing e (the line segment associated to e)
SweepEvent *r = storeSweepEvent(SweepEvent(p, false, e->pl, e, e->type));
// "Left event" of the "right line segment" resulting from dividing e (the line segment associated to e)
SweepEvent *l = storeSweepEvent(SweepEvent(p, true, e->pl, e->other, e->other->type));
if (sec (l, e->other)) { // avoid a rounding error. The left event would be processed after the right event
cout << "Oops" << endl;
e->other->left = true;
l->left = false;
}
if (sec (e, r)) { // avoid a rounding error. The left event would be processed after the right event
cout << "Oops2" << endl;
// cout << *e << endl;
}
e->other->other = l;
e->other = r;
eq.push(l);
eq.push(r);
}