This repository has been archived by the owner on Sep 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComplexNumber.cpp
435 lines (373 loc) · 14.9 KB
/
ComplexNumber.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#pragma once
#include "stdafx.h"
ComplexNumber::ComplexNumber() {}
ComplexNumber::~ComplexNumber() {}
ComplexNumber::ComplexNumber(double a, double b)
{ //z=a+bi
Re = a;
Im = b;
int c = getLength(Re);
if (getLength(Im) > c) { c = getLength(Im); }
complexNumberPrecision = c;
}
ComplexNumber::ComplexNumber(double a)
{ //z=a+0i
Re = a;
Im = 0;
complexNumberPrecision = getLength(Re);
}
ComplexNumber::ComplexNumber(std::complex<double> z) {
Re = real(z);
Im = imag(z);
int c = getLength(Re);
if (getLength(Im) > c) { c = getLength(Im); }
complexNumberPrecision = c;
}
double ComplexNumber::modulus()
{//returns |z|
return hypot(Re, Im);
}
double ComplexNumber::arg()
{//returns theta from z*e^(i*theta)
double answer = atan2(Im, Re);
return answer;
}
ComplexNumber ComplexNumber::cis(double n) { return ComplexNumber(cos(n), sin(n)); }
ComplexNumber ComplexNumber::conjugate() {
//switches z to its conjugate, returns the new complex number class.
ComplexNumber c0(Re, -Im);
return c0;
}
void ComplexNumber::randomize() {
srand(time(0) + clock());
double a = (rand() / 1000000.00) * pow(-1, rand() % 2);
Re = a;
a = (rand() / 1000000.00) * pow(-1, rand() % 2);
Im = a;
}
bool ComplexNumber::isIntegerComplexNumber() {
if (Re != floor(Re) || Im != floor(Im)) { return false; }
return true;
}
//ARITHMETIC METHODS
//===================
ComplexNumber ComplexNumber::add(ComplexNumber a, ComplexNumber b) { return ComplexNumber(a.Re + b.Re, a.Im + b.Im); }
ComplexNumber ComplexNumber::add(ComplexNumber a, double b) { return ComplexNumber(a.Re + b, a.Im); }
ComplexNumber ComplexNumber::add(double b, ComplexNumber a) { return ComplexNumber(a.Re + b, a.Im); }
ComplexNumber ComplexNumber::subtract(ComplexNumber a, ComplexNumber b) { return ComplexNumber(a.Re - b.Re, a.Im - b.Im); }
ComplexNumber ComplexNumber::subtract(ComplexNumber a, double b) { return ComplexNumber(a.Re - b, a.Im); }
ComplexNumber ComplexNumber::subtract(double b, ComplexNumber a) { return ComplexNumber(b - a.Re, a.Im); }
ComplexNumber ComplexNumber::multiply(ComplexNumber a, ComplexNumber b) { return ComplexNumber((a.Re*b.Re) - (a.Im*b.Im), (a.Im*b.Re) + (b.Im*a.Re)); }
ComplexNumber ComplexNumber::multiply(ComplexNumber a, double b) { return ComplexNumber(a.Re*b, a.Im*b); }
ComplexNumber ComplexNumber::multiply(double b, ComplexNumber a) { return ComplexNumber(a.Re*b, a.Im*b); }
ComplexNumber ComplexNumber::divide(ComplexNumber A, double a) { return ComplexNumber(A.Re / a, A.Im / a); }
ComplexNumber ComplexNumber::divide(double a, ComplexNumber A) { return ComplexNumber(A.Re / a, A.Im / a); }
ComplexNumber ComplexNumber::divide(ComplexNumber a, ComplexNumber b) {
double temp = (1 / ((b.Re*b.Re) + (b.Im*b.Im)));
double rl = (a.Re*b.Re + a.Im*b.Im)*temp;
double im = (a.Im*b.Re - a.Re*b.Im)*temp;
return ComplexNumber(rl, im);
}
ComplexNumber ComplexNumber::inverse() {
double temp = (1 / (Re*Re + Im*Im));
double re = temp * Re;
double im = temp * -Im;
return ComplexNumber(re, im);
}
ComplexNumber ComplexNumber::exponent(ComplexNumber z, double a) {
ComplexNumber c = z;
if (a < 0) {
c = c.inverse();
a = abs(a);
}
if (a > 0) {
for (int i = 0; i < a - 1; i++) {
c = c.multiply(c, z);
}
return c;
}
if (a == 0) { return ComplexNumber(1, 0); }
}
ComplexNumber ComplexNumber::exponent(double a) {
ComplexNumber z = *this;
if (a < 0) {
z = inverse();
a = abs(a);
}
if (a > 0) {
for (int i = 0; i < a - 1; i++) {
z = multiply(z, *this);
}
return z;
}
if (a == 0) { return ComplexNumber(1, 0); }
}
ComplexNumber ComplexNumber::exponent(ComplexNumber z)
{ //(x+yi)^a+bi
double x = Re;
double y = Im;
double arg1 = arg();
double rho = (x*x) + (y*y);
double part1 = z.Re * arg1 + (.5 * z.Im * (log(rho)));
double part2 = pow(rho, z.Re / 2) * exp(-z.Im * arg1);
double newRe = cos(part1) * part2;
double newIm = sin(part1) * part2;
ComplexNumber c0(newRe, newIm);
return c0;
}
//OVERLOADED OPERATORS
//====================
ComplexNumber& ComplexNumber::operator*=(ComplexNumber& rhs) { *this = multiply(*this, rhs); return *this; }
ComplexNumber& ComplexNumber::operator*=(double x) { *this = multiply(*this, x); return *this; }
ComplexNumber& ComplexNumber::operator/=(ComplexNumber& rhs) { *this = divide(*this, rhs); return *this; }
ComplexNumber& ComplexNumber::operator/=(double x) { *this = divide(*this, x); return *this; }
ComplexNumber& ComplexNumber::operator+=(ComplexNumber& rhs) { *this = add(*this, rhs); return *this; }
ComplexNumber& ComplexNumber::operator+=(double x) { *this = add(*this, x); return *this; }
ComplexNumber& ComplexNumber::operator-=(ComplexNumber& rhs) { *this = subtract(*this, rhs); return *this; }
ComplexNumber& ComplexNumber::operator-=(double x) { *this = subtract(*this, x); return *this; }
ComplexNumber& ComplexNumber::operator*(ComplexNumber& rhs) { return multiply(*this, rhs); }
ComplexNumber& ComplexNumber::operator*(double x) { ComplexNumber p = multiply(*this, x); return p; }
ComplexNumber& ComplexNumber::operator/(ComplexNumber& rhs) { return divide(*this, rhs); }
ComplexNumber& ComplexNumber::operator/(double x) { ComplexNumber p = divide(*this, x); return p; }
ComplexNumber& ComplexNumber::operator+(ComplexNumber& rhs) { return add(*this, rhs); }
ComplexNumber& ComplexNumber::operator+(double x) { return add(*this, x); }
ComplexNumber& ComplexNumber::operator-(ComplexNumber& rhs) { return subtract(*this, rhs); }
ComplexNumber& ComplexNumber::operator-(double x) { return subtract(*this, x); }
// topology in C is such that there is no comparison between complex numbers, only their moduli.
bool ComplexNumber::operator<(ComplexNumber& rhs) { return modulus() < rhs.modulus(); }
bool ComplexNumber::operator<=(ComplexNumber& rhs) { return modulus() <= rhs.modulus(); }
bool ComplexNumber::operator>(ComplexNumber& rhs) { return modulus() > rhs.modulus(); }
bool ComplexNumber::operator>=(ComplexNumber& rhs) { return modulus() >= rhs.modulus(); }
bool ComplexNumber::operator==(ComplexNumber& rhs) { return modulus() == rhs.modulus(); }
bool ComplexNumber::operator!=(ComplexNumber& rhs) { return modulus() != rhs.modulus(); }
std::wostream& operator<<(std::wostream& os, ComplexNumber& rhs) {
os << rhs.toString();
return os;
}
double ComplexNumber::abs(ComplexNumber z) { return z.modulus(); }
ComplexNumber ComplexNumber::polar() { return ComplexNumber(modulus(), arg()); }
ComplexNumber ComplexNumber::dotProduct(ComplexNumber z1, ComplexNumber z2) {//Hermitian inner product = z1*conj(z2)
return ComplexNumber(z1.Re*z2.Re+z1.Im*z2.Im, z1.Im*z2.Re-z1.Re*z2.Im);
}
ComplexNumber ComplexNumber::crossProduct(ComplexNumber z1, ComplexNumber z2) {
return ComplexNumber(z1.Re*z2.Im, -z1.Im*z2.Re);
}
double ComplexNumber::angle(ComplexNumber z1, ComplexNumber z2) {
return z2.arg()-z1.arg();
}
std::complex<double> ComplexNumber::toComplex() { return std::complex<double>(Re, Im); }
ComplexNumber ComplexNumber::toExponentialForm() { return ComplexNumber(modulus(), arg()); }
std::wstring ComplexNumber::toString() {
std::wstring answer;
std::wostringstream strs;
complexNumberPrecision = precision;
if (Re == floor(Re)) { complexNumberPrecision = 0; }
strs << std::fixed << std::setprecision(complexNumberPrecision) << Re;
answer.append(strs.str());
complexNumberPrecision = precision;
if (Im == floor(Im)) { complexNumberPrecision = 0; }
if (Im != 0) {
if (Im < 0) {
answer.append(L"-");
}
else {
answer.append(L"+");
}
if (abs(Im) != 1) {
std::wostringstream strs2;
strs2 << std::fixed << std::setprecision(complexNumberPrecision) << abs(Im);
answer.append(strs2.str());
}
answer.append(L"i");
}
return answer;
}
std::wstring ComplexNumber::toStringBothParts() {
std::wstring str = toString();
if (Im == 0) {
str.append(L"+0i");
}
return str;
}
std::wstring ComplexNumber::toStringExponentialForm() {//exponential form -- z = |z|e^arg
std::wstring answer;
std::wostringstream strs;
complexNumberPrecision = precision;
if (isIntegerComplexNumber() == true) { complexNumberPrecision = 0; }
strs << std::fixed << std::setprecision(complexNumberPrecision) << modulus() << L"e^" << std::setprecision(complexNumberPrecision) << arg();
answer = strs.str();
strs.clear();
return answer;
}
void ComplexNumber::display() { std::wcout << toString() << std::endl; }
void ComplexNumber::displayExponentialForm() { std::wcout << toStringExponentialForm() << std::endl; }
void ComplexNumber::printToFile(std::wstring filename) {
std::wofstream outf(filename, std::ios_base::app);
outf << toString() << L"\n";
outf.close();
}
void ComplexNumber::printToFileExponentialForm(std::wstring filename) {
std::wofstream outf(filename, std::ios_base::app);
outf << toStringExponentialForm() << L"\n";
outf.close();
}
//END COMPLEX NUMBER CLASS FUNCTIONS==================================================================
/*===================================
List of all Complex Functions
===================================*/
bool isNan(ComplexNumber z) {
if (z.Re != z.Re || z.Im != z.Im) { return true; }
return false;
}
ComplexNumber abs(ComplexNumber z) {
return ComplexNumber(abs(z.Re), abs(z.Im));
}
ComplexNumber ceil(ComplexNumber z) {
return ComplexNumber(ceil(z.Re), ceil(z.Im));
}
ComplexNumber floor(ComplexNumber z) {
return ComplexNumber(floor(z.Re), floor(z.Im));
}
ComplexNumber round(ComplexNumber z) {
return ComplexNumber(round(z.Re), round(z.Im));
}
ComplexNumber sqrt(ComplexNumber z) {
double Real = sqrt(z.modulus())*(cos(z.arg() / 2));
double Imag = sqrt(z.modulus())*(sin(z.arg() / 2));
return ComplexNumber(Real, Imag);
}
//Logarithmic functions
//=====================
ComplexNumber log(ComplexNumber z) { // aka 'ln(z)'
//Returns the principal value for log(z).
//Note: the complex logarithm is a function with inherent range issues.
//Be aware of these issues before using this function.
return ComplexNumber(log(sqrt((z.Re*z.Re) + (z.Im*z.Im))), atan2(z.Im, z.Re));
}
ComplexNumber log2(ComplexNumber z) { //for all log bases, log_b(x) = log(x)/log(b)
return z.divide(log(z), log(2));
}
ComplexNumber log10(ComplexNumber z) { //for all log bases, log_b(x) = log(x)/log(b)
return z.divide(log(z), log(10));
}
ComplexNumber logarithm(ComplexNumber z, double b) {
return z.divide(log(z), log(b));
}
//Trig functions
//==============
//Note: all inverse hyperbolic functions return their principal value
ComplexNumber cos(ComplexNumber z) {
double a = cos(z.Re)*cosh(z.Im);
double b = -1 * sin(z.Re)*sinh(z.Im);
return ComplexNumber(a, b);
}
ComplexNumber cosh(ComplexNumber z) { return ComplexNumber(cosh(z.Re)*cos(z.Im), sinh(z.Re)*sin(z.Im)); }
ComplexNumber sin(ComplexNumber z) {
double a = sin(z.Re)*cosh(z.Im);
double b = cos(z.Re)*sinh(z.Im);
return ComplexNumber(a, b);
}
ComplexNumber sinh(ComplexNumber z) { return ComplexNumber(sinh(z.Re)*cos(z.Im), cosh(z.Re)*sin(z.Im)); }
ComplexNumber tan(ComplexNumber z) {
return z.divide(sin(z), cos(z));
}
ComplexNumber tanh(ComplexNumber z) { return z.divide(sinh(z), cosh(z)); }
ComplexNumber exp(ComplexNumber z) {
double n = exp(z.Re);
return ComplexNumber(n*cos(z.Im), n*sin(z.Im));
}
ComplexNumber pow(ComplexNumber a, double b) {//will only return the first root if the exponent is <1 (ie principal value)
ComplexNumber n1 = log(a);
ComplexNumber n2 = a.multiply(b, n1);
return exp(n2);
}
ComplexNumber pow(ComplexNumber a, ComplexNumber b) { //a^b = exp(b*log(a))
ComplexNumber n1 = log(a);
ComplexNumber n2 = a.multiply(b, n1);
return exp(n2);
}
std::complex<double> pow(std::complex<double> a, double b) { return std::complex<double>(pow(std::abs(a), b), exp(std::arg(a)*b));}
std::complex<double> pow(std::complex<double> a, std::complex<double> b) { return exp(b*log(a)); }
std::vector<ComplexNumber> roots(ComplexNumber a, double b) {//returns a vector of all complex roots of a complex function
std::vector<ComplexNumber> z;
int i = 0;
double arg = a.arg();
while (b*((arg)+(i * 2 * PI))<(2 * PI)) {
double r = pow(a.modulus(), b);
double theta = (a.arg() + (i * 2 * PI))*b;
ComplexNumber w(r*cos(theta), r*sin(theta));
z.push_back(w);
++i;
}
return z;
}
ComplexNumber cot(ComplexNumber z) {
return z.divide(cos(z), sin(z));
}
ComplexNumber csc(ComplexNumber z) {
return z.divide(ComplexNumber(1, 0), sin(z));
}
ComplexNumber sec(ComplexNumber z) {
return z.divide(ComplexNumber(1, 0), cos(z));
}
ComplexNumber acosh(ComplexNumber z) { //acosh = log(z + (z+1)^2 (z-1)^2) )
ComplexNumber z2(z.Re + 1, z.Im);
ComplexNumber z3(z.Re - 1, z.Im);
return log(z.add(z, z.multiply(sqrt(z2), sqrt(z3))));
}
ComplexNumber asin(ComplexNumber z) { //asin(z) = -i ln(iz + sqrt(1-z^2) )
ComplexNumber argument = z.multiply(z, z);
argument = ComplexNumber(1 - argument.Re, argument.Im);
argument = sqrt(argument);
argument = argument.add(argument.multiply(ComplexNumber(0, 1), z), argument);
argument = log(argument);
return z.multiply(ComplexNumber(0, -1), argument);
}
ComplexNumber acos(ComplexNumber z) { //acos(z) = PI/2 - asin(z)
return z.subtract((PI / 2), asin(z));
}
ComplexNumber asinh(ComplexNumber z) {//asinh(z) = log(z + sqrt(z^2 + 1))
ComplexNumber z2 = z.multiply(z, z);
z2 += 1.0;
return z.add(z, z2);
}
ComplexNumber acsch(ComplexNumber z) { //acsch(z) = log(1/z + sqrt(1/z^2 + 1) )
ComplexNumber z2 = z.multiply(z, z);
z = z.inverse();
z2 = z2.inverse();
ComplexNumber z3(z2.Re + 1, z2.Im);
return log(z.add(z, sqrt(z3)));
}
ComplexNumber asech(ComplexNumber z) { //asech(z) = log(1/z + sqrt(1/z + 1)sqrt(1/z - 1))
z = z.inverse();
ComplexNumber z2(z.Re + 1, z.Im);
ComplexNumber z3(z.Re - 1, z.Im);
z2 = z2.multiply(sqrt(z2), sqrt(z3));
return log(z.add(z, z2));
}
ComplexNumber atan(ComplexNumber z) { //atan(z) = 0.5 *i *(ln(1-zi) - ln(1+zi))
ComplexNumber iz1 = z.subtract(ComplexNumber(1, 0), z.multiply(ComplexNumber(0, 1), z));
ComplexNumber iz2 = z.add(ComplexNumber(1, 0), z.multiply(ComplexNumber(0, 1), z));;
iz1 = z.subtract(log(iz1), log(iz2));
ComplexNumber a(0, 0.5);
return a.multiply(a, iz1);
}
ComplexNumber atanh(ComplexNumber z) { //atanh(z) = 0.5[log(1+z) - log(1-z)]
ComplexNumber z2(1 + z.Re, z.Im);
ComplexNumber z3(1 - z.Re, z.Im);
z2 = log(z2);
z3 = log(z3);
z2 *= 0.5;
z3 *= 0.5;
return z2.subtract(z2, z3);
}
ComplexNumber acoth(ComplexNumber z) { //acoth = 0.5[log(1 + 1/z) - log(1 - 1/z)]
z = z.divide(1.0, z);
ComplexNumber z2(1 + z.Re, z.Im);
ComplexNumber z3(1 - z.Re, z.Im);
z2 = log(z2);
z3 = log(z3);
z2 *= 0.5;
z3 *= 0.5;
return z2.subtract(z2, z3);
}