This repository has been archived by the owner on Sep 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDualNumber.cpp
174 lines (158 loc) · 6.94 KB
/
DualNumber.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#pragma once
#include "stdafx.h"
DualNumber::DualNumber() {}
DualNumber::DualNumber(double x) {
a = x;
b = 0;
int c = getLength(a);
dualNumberPrecision = c;
}
DualNumber::DualNumber(double x, double y) {
a = x;
b = y;
int c = getLength(a);
if (getLength(b) > c) { c = getLength(b); }
dualNumberPrecision = c;
}
DualNumber::~DualNumber() {}
DualNumber DualNumber::add(DualNumber A, DualNumber B) { return DualNumber(A.a + B.a, A.b + B.b); }
DualNumber DualNumber::add(DualNumber A, double B) { return DualNumber(A.a + B, A.b + B); }
DualNumber DualNumber::subtract(DualNumber A, DualNumber B) { return DualNumber(A.a - B.a, A.b - B.b); }
DualNumber DualNumber::subtract(DualNumber A, double B) { return DualNumber(A.a - B, A.b - B); }
DualNumber DualNumber::multiply(DualNumber A, DualNumber B) { return DualNumber(A.a*B.a, (A.a*B.b) + (A.b*B.a)); }
DualNumber DualNumber::multiply(DualNumber A, double B) { return DualNumber(A.a*B, A.b*B); }
DualNumber DualNumber::divide(DualNumber A, DualNumber B) {
if (B.a == 0) { return DualNumber(); }
return DualNumber(A.a / B.a, (A.b / B.a) - ((A.a*B.b) / (B.a*B.a)));
}
DualNumber DualNumber::divide(DualNumber A, double B) { if (B != 0) { return DualNumber(A.a*B, A.b / B); } }
DualNumber& DualNumber::operator+=(const DualNumber& rhs) {
a += rhs.a;
b += rhs.b;
return *this;
}
DualNumber& DualNumber::operator+=(double x) {
a += x;
return *this;
}
const DualNumber DualNumber::operator+(const DualNumber& rhs) const {
DualNumber sum = *this;
sum.a += rhs.a;
sum.b += rhs.b;
return sum;
}
std::wostream& operator<<(std::wostream& os, const DualNumber& rhs) {
os << rhs.a << L"+" << rhs.b << L"ε";
return os;
}
void DualNumber::randomize() {
srand(time(0) + clock());
double a2 = (rand() / 1000000.00) * pow(-1, rand() % 2);
a = a2;
a2 = (rand() / 1000000.00) * pow(-1, rand() % 2);
b = a2;
}
DualNumber DualNumber::inverse() { return DualNumber(1.0 / a, b / (a*a)); }
DualNumber DualNumber::conjugate() { return DualNumber(a, -b); }
DualNumber DualNumber::exponent(int a) {
DualNumber z = *this;
if (a < 0) {
z = inverse();
a = abs(a);
}
return DualNumber(pow(z.a, a), a*pow(z.a, a - 1)*z.b);
if (a == 0) { return DualNumber(1, 0); }
}
DualNumber DualNumber::exponent(DualNumber z, double a) {
DualNumber c = z;
if (a < 0) {
c = c.inverse();
a = abs(a);
}
if (a > 0) {
for (int i = 0; i < a - 1; i++) {
c = c.multiply(c, z);
}
return c;
}
if (a == 0) { return DualNumber(1, 0); }
}
DualNumber DualNumber::exponent(DualNumber d1, DualNumber d2) { return DualNumber(d1.a, d1.b + (d1.a*d1.a*d2.b) - (d1.a*d2.b)); }
DualNumber& DualNumber::operator*=(DualNumber& rhs) { *this = multiply(*this, rhs); return *this; }
DualNumber& DualNumber::operator*=(double x) { *this = multiply(*this, x); return *this; }
DualNumber& DualNumber::operator/=(DualNumber& rhs) { *this = divide(*this, rhs); return *this; }
DualNumber& DualNumber::operator/=(double x) { *this = divide(*this, x); return *this; }
DualNumber& DualNumber::operator+=(DualNumber& rhs) { *this = add(*this, rhs); return *this; }
//DualNumber& DualNumber::operator+=(double x) { *this = add(*this, x); return *this; }
DualNumber& DualNumber::operator-=(DualNumber& rhs) { *this = subtract(*this, rhs); return *this; }
DualNumber& DualNumber::operator-=(double x) { *this = subtract(*this, x); return *this; }
DualNumber& DualNumber::operator*(DualNumber& rhs) { return multiply(*this, rhs); }
DualNumber& DualNumber::operator*(double x) { DualNumber p = multiply(*this, x); return p; }
DualNumber& DualNumber::operator/(DualNumber& rhs) { return divide(*this, rhs); }
DualNumber& DualNumber::operator/(double x) { DualNumber p = divide(*this, x); return p; }
DualNumber& DualNumber::operator+(DualNumber& rhs) { return add(*this, rhs); }
DualNumber& DualNumber::operator+(double x) { return add(*this, x); }
DualNumber& DualNumber::operator-(DualNumber& rhs) { return subtract(*this, rhs); }
DualNumber& DualNumber::operator-(double x) { return subtract(*this, x); }
DualNumber& DualNumber::operator^(int x) { return exponent(*this, x); }
DualNumber& DualNumber::operator^(double x) { return exponent(*this, x); }
DualNumber& DualNumber::operator^(DualNumber x) { return exponent(*this, x); }
std::wstring DualNumber::toString() {
std::wstring answer;
std::wostringstream strs;
dualNumberPrecision = precision;
if (a == floor(a)) { dualNumberPrecision = 0; }
strs << std::fixed << std::setprecision(dualNumberPrecision) << a;
answer.append(strs.str());
dualNumberPrecision = precision;
if (b == floor(b)) { dualNumberPrecision = 0; }
if (b != 0) {
answer.append(L" + ");
if (b != 1) {
std::wostringstream strs2;
strs2 << std::fixed << std::setprecision(dualNumberPrecision) << b;
answer.append(strs2.str());
}
answer.append(L"ε");
}
return answer;
}
void DualNumber::display() {
std::wstring temp = L"ε";
std::wcout << a << L"+" << b << temp << std::endl;
}
//==============END DUAL NUMBER CLASS FUNCTIONS======================
//Dual Number valued functions
//============================
DualNumber exp(DualNumber d) { return DualNumber(exp(d.a), exp(d.a)*(1 + d.b)); }
DualNumber log(DualNumber d) { return DualNumber(log(d.a), d.b / d.a); }
DualNumber sin(DualNumber d) {
double re = 1;
double du = 0;
for (int i = 1; i < 200; ++i) {
double divisor = factorial(2 * i)*pow(-1, i);
re += pow(d.a, 2 * i) / divisor;
du += (pow(d.a, 2 * i - 1) * d.b) / divisor;
}
return DualNumber(re, du);
}
DualNumber cos(DualNumber d) {
double re = 0;
double du = 0;
for (int i = 1; i < 200; ++i) {
double divisor = factorial(2 * i - 1)*pow(-1, i - 1);
re += pow(d.a, 2 * i - 1) / divisor;
du += (pow(d.a, 2 * i - 2) * d.b) / divisor;
}
return DualNumber(re, du);
}
DualNumber tan(DualNumber d) { return sin(d) / cos(d); }
DualNumber sec(DualNumber d) { return cos(d).inverse(); }
DualNumber csc(DualNumber d) { return sin(d).inverse(); }
DualNumber cot(DualNumber d) { return cos(d) / sin(d); }
DualNumber sinh(DualNumber d) { return DualNumber(0.5 * (exp(d.a) - (1.0 / exp(d.a))), 0.5*d.b*(exp(d.a) + (1.0 / exp(d.a)))); }
DualNumber cosh(DualNumber d) { return DualNumber(0.5 * (exp(d.a) + (1.0 / exp(d.a))), 0.5*d.b*(exp(d.a) - (1.0 / exp(d.a)))); }
DualNumber tanh(DualNumber d) { return sinh(d) / cosh(d); }
DualNumber sech(DualNumber d) { return cosh(d).inverse(); }
DualNumber csch(DualNumber d) { return sinh(d).inverse(); }
DualNumber coth(DualNumber d) { return cosh(d) / sinh(d); }