forked from bshall/Tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.py
120 lines (101 loc) · 3.51 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import json
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import cpu_count
from pathlib import Path
import librosa
import numpy as np
import pyloudnorm as pyln
import toml
from tqdm import tqdm
def melspectrogram(
wav,
sr=16000,
hop_length=200,
win_length=800,
n_fft=2048,
n_mels=128,
fmin=50,
preemph=0.97,
top_db=80,
ref_db=20,
):
mel = librosa.feature.melspectrogram(
librosa.effects.preemphasis(wav, coef=preemph),
sr=sr,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
norm=1,
power=1,
)
logmel = librosa.amplitude_to_db(mel, top_db=None) - ref_db
logmel = np.maximum(logmel, -top_db)
return logmel / top_db
def mu_compress(wav, hop_length=200, frame_length=800, bits=10):
wav = np.pad(wav, (frame_length // 2,), mode="reflect")
wav = wav[: ((wav.shape[0] - frame_length) // hop_length + 1) * hop_length]
wav = 2 ** (bits - 1) + librosa.mu_compress(wav, mu=2 ** bits - 1)
return wav
def process_wav(wav_path, out_path, cfg):
meter = pyln.Meter(cfg["sr"])
wav, _ = librosa.load(wav_path.with_suffix(".wav"), sr=cfg["sr"])
loudness = meter.integrated_loudness(wav)
wav = pyln.normalize.loudness(wav, loudness, -24)
peak = np.abs(wav).max()
if peak >= 1:
wav = wav / peak * 0.999
logmel = melspectrogram(
wav,
sr=cfg["sr"],
hop_length=cfg["hop_length"],
win_length=cfg["win_length"],
n_fft=cfg["n_fft"],
n_mels=cfg["n_mels"],
fmin=cfg["fmin"],
preemph=cfg["preemph"],
top_db=cfg["top_db"],
)
wav = mu_compress(
wav,
hop_length=cfg["hop_length"],
frame_length=cfg["win_length"],
bits=cfg["mulaw"]["bits"],
)
np.save(out_path.with_suffix(".mel.npy"), logmel)
np.save(out_path.with_suffix(".wav.npy"), wav)
return out_path, logmel.shape[-1]
def preprocess_dataset(args):
with open("tacotron/config.toml") as file:
cfg = toml.load(file)
in_dir, out_dir = Path(args.in_dir), Path(args.out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
executor = ProcessPoolExecutor(max_workers=cpu_count())
print("Extracting features for train set")
futures = []
split_path = out_dir / "train"
with open(split_path.with_suffix(".json")) as file:
metadata = json.load(file)
for in_path, out_path in metadata:
wav_path = in_dir / in_path
out_path = out_dir / out_path
out_path.parent.mkdir(parents=True, exist_ok=True)
futures.append(
executor.submit(process_wav, wav_path, out_path, cfg["preprocess"])
)
results = [future.result() for future in tqdm(futures)]
lengths = {path.stem: length for path, length in results}
with open(out_dir / "lengths.json", "w") as file:
json.dump(lengths, file, indent=4)
frames = sum(lengths.values())
frame_shift_ms = cfg["preprocess"]["hop_length"] / cfg["preprocess"]["sr"]
hours = frames * frame_shift_ms / 3600
print(f"Wrote {len(lengths)} utterances, {frames} frames ({hours:.2f} hours)")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Preprocess an audio dataset.")
parser.add_argument("in_dir", help="Path to the dataset directory")
parser.add_argument("out_dir", help="Path to the output directory")
args = parser.parse_args()
preprocess_dataset(args)