Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

For suggestions to reproduce on cityspaces #125

Open
hustcc19860606 opened this issue Dec 8, 2020 · 7 comments
Open

For suggestions to reproduce on cityspaces #125

hustcc19860606 opened this issue Dec 8, 2020 · 7 comments

Comments

@hustcc19860606
Copy link

hustcc19860606 commented Dec 8, 2020

I try to reproduce on cityspaces based on 4XP100 GPUs. And try the combination of loss function. The experimental parameters are as follows:
1、without aux and se-loss
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname 1-dranet101 --base-size 2048 --crop-size 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8
The outcome of training stage:
=>Epoch 239, learning rate = 0.0000, previous best = 0.7571
Train loss: 0.172: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 371/371 [10:34<00:00, 1.71s/it]
pixAcc: 0.941, mIoU: 0.567: 100%|
The outcome of test stage after 240 epochs::
██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 125/125 [04:37<00:00, 2.22s/it]
pixAcc: 0.9393, mIoU: 0.6456
2、without se-loss
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname dranet101 --base-size 2048 --crop-size 768 --epochs 450 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux
The outcome of test stage after 240 epochs:
pixAcc: 0.9350, mIoU: 0.6230: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 125/125 [04:43<00:00, 2.27s/it]
pixAcc: 0.9350, mIoU: 0.6230

3、use aux and se-loss
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname 3-dranet101 --base-size 2048 --crop-size 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux --se-loss
The return value is not enough:
File "/opt/conda/lib/python3.7/site-packages/torch_encoding-1.2.2b20201207-py3.7.egg/encoding/nn/loss.py", line 89, in forward
pred1, se_pred, pred2, target = tuple(inputs)
ValueError: not enough values to unpack (expected 4, got 3)

can you give me some suggestions to reproduce the outcome of paper?

@junfu1115

@sundongwei
Copy link

only add --aux, you did not error?

@sundongwei
Copy link

i think you modify the loss function ,otherwise , you only add --aux will occur error yes?

@hustcc19860606
Copy link
Author

hustcc19860606 commented Dec 8, 2020

i think you modify the loss function ,otherwise , you only add --aux will occur error yes?

I only add some 'print' statements in the code, and i find use 'CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname dranet101 --base-size 2048 --cropize 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux ' , then, args.aux= True and args.se-loss= False.

If i try to reproduce, what's the statement of args.aux and args.se-loss? I find if args.aux= True and args.se-loss= True, there will be error for not enough inputs.

@sundongwei
Copy link

i think you modify the loss function ,otherwise , you only add --aux will occur error yes?

I only add some 'print' statements in the code, and i find use 'CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname dranet101 --base-size 2048 --cropize 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux ' , then, args.aux= True and args.se-loss= False.

If i try to reproduce, what's the statement of args.aux and args.se-loss? I find if args.aux= True and args.se-loss= True, there will be error for not enough inputs.

i mean i use the same args like you ,"CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname dranet101 --base-size 2048 --cropize 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux " is error .so the model actually use another loss function. you can check it in my issue 39
#124

@hustcc19860606
Copy link
Author

hustcc19860606 commented Dec 8, 2020

i think you modify the loss function ,otherwise , you only add --aux will occur error yes?

I only add some 'print' statements in the code, and i find use 'CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname dranet101 --base-size 2048 --cropize 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux ' , then, args.aux= True and args.se-loss= False.
If i try to reproduce, what's the statement of args.aux and args.se-loss? I find if args.aux= True and args.se-loss= True, there will be error for not enough inputs.

i mean i use the same args like you ,"CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset citys --model dran --backbone resnet101 --checkname dranet101 --base-size 2048 --cropize 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 8 --multi-grid --multi-dilation 4 8 16 --os 8 --aux " is error .so the model actually use another loss function. you can check it in my issue 39
#124

I think the loss funtion is the same as version-0.5. Do you reproduce the accuracy of paper?
00001
00002

@sundongwei
Copy link

i do not reproduce the accuracy of paper, i modify the code for my project

@wlj567
Copy link

wlj567 commented Sep 29, 2021

Hello, do you have the complete original code? Is it convenient to add a contact information? Thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants