forked from datacarpentry/R-ecology-lesson
-
Notifications
You must be signed in to change notification settings - Fork 0
/
04-dplyr.html
364 lines (316 loc) · 24.1 KB
/
04-dplyr.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Data Carpentry contributors" />
<title>Manipulating and analyzing data with dplyr; Exporting data</title>
<script src="libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; background-color: #f8f8f8; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
pre, code { background-color: #f8f8f8; }
code > span.kw { color: #204a87; font-weight: bold; } /* Keyword */
code > span.dt { color: #204a87; } /* DataType */
code > span.dv { color: #0000cf; } /* DecVal */
code > span.bn { color: #0000cf; } /* BaseN */
code > span.fl { color: #0000cf; } /* Float */
code > span.ch { color: #4e9a06; } /* Char */
code > span.st { color: #4e9a06; } /* String */
code > span.co { color: #8f5902; font-style: italic; } /* Comment */
code > span.ot { color: #8f5902; } /* Other */
code > span.al { color: #ef2929; } /* Alert */
code > span.fu { color: #000000; } /* Function */
code > span.er { color: #a40000; font-weight: bold; } /* Error */
code > span.wa { color: #8f5902; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #000000; } /* Constant */
code > span.sc { color: #000000; } /* SpecialChar */
code > span.vs { color: #4e9a06; } /* VerbatimString */
code > span.ss { color: #4e9a06; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #000000; } /* Variable */
code > span.cf { color: #204a87; font-weight: bold; } /* ControlFlow */
code > span.op { color: #ce5c00; font-weight: bold; } /* Operator */
code > span.pp { color: #8f5902; font-style: italic; } /* Preprocessor */
code > span.ex { } /* Extension */
code > span.at { color: #c4a000; } /* Attribute */
code > span.do { color: #8f5902; font-weight: bold; font-style: italic; } /* Documentation */
code > span.an { color: #8f5902; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #8f5902; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #8f5902; font-weight: bold; font-style: italic; } /* Information */
</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<div class="container-fluid main-container">
<!-- tabsets -->
<script src="libs/navigation-1.0/tabsets.js"></script>
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Manipulating and analyzing data with dplyr; Exporting data</h1>
<h4 class="author"><em>Data Carpentry contributors</em></h4>
</div>
<div id="TOC">
<ul>
<li><a href="#data-manipulation-using-dplyr">Data Manipulation using dplyr</a><ul>
<li><a href="#what-is-dplyr">What is <code>dplyr</code>?</a></li>
<li><a href="#selecting-columns-and-filtering-rows">Selecting columns and filtering rows</a></li>
<li><a href="#pipes">Pipes</a><ul>
<li><a href="#mutate">Mutate</a></li>
<li><a href="#split-apply-combine-data-analysis-and-the-summarize-function">Split-apply-combine data analysis and the summarize() function</a></li>
</ul></li>
</ul></li>
<li><a href="#exporting-data">Exporting data</a></li>
</ul>
</div>
<hr />
<div id="data-manipulation-using-dplyr" class="section level1">
<h1>Data Manipulation using dplyr</h1>
<p>Bracket subsetting is handy, but it can be cumbersome and difficult to read, especially for complicated operations. Enter <code>dplyr</code>. <code>dplyr</code> is a package for making data manipulation easier.</p>
<p>Packages in R are basically sets of additional functions that let you do more stuff. The functions we’ve been using so far, like <code>str()</code> or <code>data.frame()</code>, come built into R; packages give you access to more of them. Before you use a package for the first time you need to install it on your machine, and then you should to import it in every subsequent R session when you’ll need it.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">install.packages</span>(<span class="st">"dplyr"</span>)</code></pre></div>
<p>You might get asked to choose a CRAN mirror – this is basically asking you to choose a site to download the package from. The choice doesn’t matter too much; we recommend the RStudio mirror.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">library</span>(<span class="st">"dplyr"</span>) ## load the package</code></pre></div>
<div id="what-is-dplyr" class="section level2">
<h2>What is <code>dplyr</code>?</h2>
<p>The package <code>dplyr</code> provides easy tools for the most common data manipulation tasks. It is built to work directly with data frames. The thinking behind it was largely inspired by the package <code>plyr</code> which has been in use for some time but suffered from being slow in some cases.<code>dplyr</code> addresses this by porting much of the computation to C++. An additional feature is the ability to work with data stored directly in an external database. The benefits of doing this are that the data can be managed natively in a relational database, queries can be conducted on that database, and only the results of the query returned.</p>
<p>This addresses a common problem with R in that all operations are conducted in memory and thus the amount of data you can work with is limited by available memory. The database connections essentially remove that limitation in that you can have a database of many 100s GB, conduct queries on it directly, and pull back just what you need for analysis in R.</p>
<p>To learn more about <code>dplyr</code> after the workshop, you may want to check out this <a href="http://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf">handy dplyr cheatsheet</a>.</p>
</div>
<div id="selecting-columns-and-filtering-rows" class="section level2">
<h2>Selecting columns and filtering rows</h2>
<p>We’re going to learn some of the most common <code>dplyr</code> functions: <code>select()</code>, <code>filter()</code>, <code>mutate()</code>, <code>group_by()</code>, and <code>summarize()</code>. To select columns of a data frame, use <code>select()</code>. The first argument to this function is the data frame (<code>surveys</code>), and the subsequent arguments are the columns to keep.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">select</span>(surveys, plot_id, species_id, weight)</code></pre></div>
<p>To choose rows, use <code>filter()</code>:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">filter</span>(surveys, year ==<span class="st"> </span><span class="dv">1995</span>)</code></pre></div>
</div>
<div id="pipes" class="section level2">
<h2>Pipes</h2>
<p>But what if you wanted to select and filter at the same time? There are three ways to do this: use intermediate steps, nested functions, or pipes. With the intermediate steps, you essentially create a temporary data frame and use that as input to the next function. This can clutter up your workspace with lots of objects. You can also nest functions (i.e. one function inside of another). This is handy, but can be difficult to read if too many functions are nested as the process from inside out. The last option, pipes, are a fairly recent addition to R. Pipes let you take the output of one function and send it directly to the next, which is useful when you need to many things to the same data set. Pipes in R look like <code>%>%</code> and are made available via the <code>magrittr</code> package installed as part of <code>dplyr</code>.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">filter</span>(weight <<span class="st"> </span><span class="dv">5</span>) %>%
<span class="st"> </span><span class="kw">select</span>(species_id, sex, weight)</code></pre></div>
<p>In the above we use the pipe to send the <code>surveys</code> data set first through <code>filter</code>, to keep rows where <code>wgt</code> was less than 5, and then through <code>select</code> to keep the <code>species</code> and <code>sex</code> columns. When the data frame is being passed to the <code>filter()</code> and <code>select()</code> functions through a pipe, we don’t need to include it as an argument to these functions anymore.</p>
<p>If we wanted to create a new object with this smaller version of the data we could do so by assigning it a new name:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys_sml <-<span class="st"> </span>surveys %>%
<span class="st"> </span><span class="kw">filter</span>(weight <<span class="st"> </span><span class="dv">5</span>) %>%
<span class="st"> </span><span class="kw">select</span>(species_id, sex, weight)
surveys_sml</code></pre></div>
<p>Note that the final data frame is the leftmost part of this expression.</p>
<blockquote>
<h3 id="challenge" class="challenge">Challenge</h3>
<p>Using pipes, subset the data to include individuals collected before 1995, and retain the columns <code>year</code>, <code>sex</code>, and <code>weight.</code></p>
</blockquote>
<!---
```r
## Answer
surveys %>%
filter(year < 1995) %>%
select(year, sex, weight)
```
--->
<div id="mutate" class="section level3">
<h3>Mutate</h3>
<p>Frequently you’ll want to create new columns based on the values in existing columns, for example to do unit conversions, or find the ratio of values in two columns. For this we’ll use <code>mutate()</code>.</p>
<p>To create a new column of weight in kg:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">weight_kg =</span> weight /<span class="st"> </span><span class="dv">1000</span>)</code></pre></div>
<p>If this runs off your screen and you just want to see the first few rows, you can use a pipe to view the <code>head()</code> of the data (pipes work with non-dplyr functions too, as long as the <code>dplyr</code> or <code>magrittr</code> packages are loaded).</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">weight_kg =</span> weight /<span class="st"> </span><span class="dv">1000</span>) %>%
<span class="st"> </span>head</code></pre></div>
<p>The first few rows are full of NAs, so if we wanted to remove those we could insert a <code>filter()</code> in this chain:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">filter</span>(!<span class="kw">is.na</span>(weight)) %>%
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">weight_kg =</span> weight /<span class="st"> </span><span class="dv">1000</span>) %>%
<span class="st"> </span>head</code></pre></div>
<p><code>is.na()</code> is a function that determines whether something is or is not an <code>NA</code>. The <code>!</code> symbol negates it, so we’re asking for everything that is not an <code>NA</code>.</p>
<blockquote>
<h3 id="challenge-1" class="challenge">Challenge</h3>
<p>Create a new dataframe from the survey data that meets the following criteria: contains only the <code>species_id</code> column and a column that contains values that are half the <code>hindfoot_length</code> values (e.g. a new column <code>hindfoot_half</code>). In this <code>hindfoot_half</code> column, there are no NA values and all values are < 30.</p>
<p><strong>Hint</strong>: think about how the commands should be ordered to produce this data frame!</p>
</blockquote>
<!---
```r
## Answer
surveys_hindfoot_half <- surveys %>%
filter(!is.na(hindfoot_length)) %>%
mutate(hindfoot_half = hindfoot_length / 2) %>%
filter(hindfoot_half < 30) %>%
select(species_id, hindfoot_half)
```
--->
</div>
<div id="split-apply-combine-data-analysis-and-the-summarize-function" class="section level3">
<h3>Split-apply-combine data analysis and the summarize() function</h3>
<p>Many data analysis tasks can be approached using the “split-apply-combine” paradigm: split the data into groups, apply some analysis to each group, and then combine the results. <code>dplyr</code> makes this very easy through the use of the <code>group_by()</code> function.</p>
<div id="the-summarize-function" class="section level4">
<h4>The <code>summarize()</code> function</h4>
<p><code>group_by()</code> is often used together with <code>summarize()</code> which collapses each group into a single-row summary of that group. <code>group_by()</code> takes as argument the column names that contain the <strong>categorical</strong> variables for which you want to calculate the summary statistics. So to view mean the <code>weight</code> by sex:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">group_by</span>(sex) %>%
<span class="st"> </span><span class="kw">summarize</span>(<span class="dt">mean_weight =</span> <span class="kw">mean</span>(weight, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>))</code></pre></div>
<p>You can group by multiple columns too:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">group_by</span>(sex, species_id) %>%
<span class="st"> </span><span class="kw">summarize</span>(<span class="dt">mean_weight =</span> <span class="kw">mean</span>(weight, <span class="dt">na.rm =</span> <span class="ot">TRUE</span>))</code></pre></div>
<p>When grouping both by “sex” and “species_id”, the first rows are for individuals that escaped before their sex could be determined and weighted. You may notice that the last column does not contain <code>NA</code> but <code>NaN</code> (which refers to “Not a Number”). To avoid this, we can remove the missing values for weight before we attempt to calculate the summary statistics on weight. Because the missing values are removed, we can omit <code>na.rm=TRUE</code> when computing the mean:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">filter</span>(!<span class="kw">is.na</span>(weight)) %>%
<span class="st"> </span><span class="kw">group_by</span>(sex, species_id) %>%
<span class="st"> </span><span class="kw">summarize</span>(<span class="dt">mean_weight =</span> <span class="kw">mean</span>(weight))</code></pre></div>
<p>You may also have noticed, that the output from these calls don’t run off the screen anymore. That’s because <code>dplyr</code> has changed our <code>data.frame</code> to a <code>tbl_df</code>. This is a data structure that’s very similar to a data frame; for our purposes the only difference is that it won’t automatically show tons of data going off the screen, while displaying the data type for each column under its name. If you want to display more data on the screen, you can add the <code>print() function at the end of the with the argument</code>n` specifying the number of rows to display:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">filter</span>(!<span class="kw">is.na</span>(weight)) %>%
<span class="st"> </span><span class="kw">group_by</span>(sex, species_id) %>%
<span class="st"> </span><span class="kw">summarize</span>(<span class="dt">mean_weight =</span> <span class="kw">mean</span>(weight)) %>%
<span class="st"> </span><span class="kw">print</span>(<span class="dt">n=</span><span class="dv">15</span>)</code></pre></div>
<p>Once the data is grouped, you can also summarize multiple variables at the same time (and not necessarily on the same variable). For instance, we could add a column indicating the minimum weight for each species for each sex:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">filter</span>(!<span class="kw">is.na</span>(weight)) %>%
<span class="st"> </span><span class="kw">group_by</span>(sex, species_id) %>%
<span class="st"> </span><span class="kw">summarize</span>(<span class="dt">mean_weight =</span> <span class="kw">mean</span>(weight),
<span class="dt">min_weight =</span> <span class="kw">min</span>(weight))</code></pre></div>
</div>
<div id="tallying" class="section level4">
<h4>Tallying</h4>
<p>When working with data, it is also common to want to know the number of observations found for each factor or combination of factors. For this, <code>dplyr</code> provides <code>tally()</code>. For example, if we wanted to group by sex and find the number of rows of data for each sex, we would do:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys %>%
<span class="st"> </span><span class="kw">group_by</span>(sex) %>%
<span class="st"> </span><span class="kw">tally</span>()</code></pre></div>
<p>Here, <code>tally()</code> is the action applied to the groups created to <code>group_by()</code> and counts the total number of records for each category.</p>
<blockquote>
<h3 id="challenge-2" class="challenge">Challenge</h3>
<p>How many individuals were caught in each <code>plot_type</code> surveyed?</p>
</blockquote>
<!---
--->
<blockquote>
<h3 id="challenge-3" class="challenge">Challenge</h3>
<p>Use <code>group_by()</code> and <code>summarize()</code> to find the mean, min, and max hindfoot length for each species (using <code>species _id</code>).</p>
</blockquote>
<!---
--->
<blockquote>
<h3 id="challenge-4" class="challenge">Challenge</h3>
<p>What was the heaviest animal measured in each year? Return the columns <code>year</code>, <code>genus</code>, <code>species_id</code>, and <code>weight</code>.</p>
</blockquote>
<!---
## Answer
--->
</div>
</div>
</div>
</div>
<div id="exporting-data" class="section level1">
<h1>Exporting data</h1>
<p>Now that you have learned how to use <code>dplyr</code> to extract the information you need from the raw data, or to summarize your raw data, you may want to export these new datasets to share them with your collaborators or for archival.</p>
<p>Similarly to the <code>read.csv()</code> function used to read in CSV into R, there is a <code>write.csv()</code> function that generates CSV files from data frames.</p>
<p>Before using it, we are going to create a new folder, <code>data_output</code> in our working directory that will store this generated dataset. We don’t want to write generated datasets in the same directory as our raw data. It’s good practice to keep them separate. The <code>data</code> folder should only contain the raw, unaltered data, and should be left alone to make sure we don’t delete or modify it; on the other end the content of <code>data_output</code> directory will be generated by our script, and we know that we can delete the files it contains because we have the script that can re-generate these files.</p>
<p>In preparation for our next lesson on plotting, we are going to prepare a cleaned up version of the dataset that doesn’t include any missing data.</p>
<p>Let’s start by removing observations for which the <code>species_id</code> is missing. In this dataset, the missing species are represented by an empty string and not an <code>NA</code>. Let’s also remove observations for which <code>weight</code> and the <code>hindfoot_length</code> are missing. This dataset will also only contain observations of animals for which the sex has been determined:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">surveys_complete <-<span class="st"> </span>surveys %>%
<span class="st"> </span><span class="kw">filter</span>(species_id !=<span class="st"> ""</span>, <span class="co"># remove missing species_id</span>
!<span class="kw">is.na</span>(weight), <span class="co"># remove missing weight</span>
!<span class="kw">is.na</span>(hindfoot_length), <span class="co"># remove missing hindfoot_length</span>
sex !=<span class="st"> ""</span>) <span class="co"># remove missing sex</span></code></pre></div>
<p>Because we are interested in plotting how species abundances have changed through time, we are also going to remove observations for rare species (i.e., that have been observed less than 50 times). We will do this in two steps: first we are going to create a dataset that counts how often each species has been observed, and filter out the rare species; then, we will extract only the observations for these more common species:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">## Extract the most common species_id
species_counts <-<span class="st"> </span>surveys_complete %>%
<span class="st"> </span><span class="kw">group_by</span>(species_id) %>%
<span class="st"> </span>tally %>%
<span class="st"> </span><span class="kw">filter</span>(n >=<span class="st"> </span><span class="dv">50</span>) %>%
<span class="st"> </span><span class="kw">select</span>(species_id)
## Only keep the most common species
surveys_complete <-<span class="st"> </span>surveys_complete %>%
<span class="st"> </span><span class="kw">filter</span>(species_id %in%<span class="st"> </span>species_counts$species_id)</code></pre></div>
<p>To make sure that everyone has the same dataset, check that <code>surveys_complete</code> has 30463 rows and 13 columns by typing <code>dim(surveys_complete)</code>.</p>
<p>Now that our dataset is ready, we can save it as a CSV file in our <code>data_output</code> folder. By default, <code>write.csv()</code> includes a column with row names (in our case the names are just the row numbers), so we need to add <code>row.names = FALSE</code> so they are not included:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">write.csv</span>(surveys_complete, <span class="dt">file=</span><span class="st">"data_output/surveys_complete.csv"</span>,
<span class="dt">row.names=</span><span class="ot">FALSE</span>)</code></pre></div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
$(document).ready(function () {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>