Skip to content

Latest commit

 

History

History

200

Train

  • 10,000 random generate graph
  • trainset
  • networkx.generators.random_graphs.powerlaw_cluster_graph(n=200, m=4, p=0.05)

Valid

  • 100 random generate graph
  • validset
  • networkx.generators.random_graphs.powerlaw_cluster_graph(n=200, m=4, p=0.05)

Different Settings

GT/PR Sigmoid(y_pr) 1/0 y_pr BC_hat
Sigmoid(y_gt) 1. BCE Loss
3. MSE Loss
1/0 2. BCE Loss 6. BCE Loss
y_gt 4. MSE Loss
BC 5. MSE Loss

Train & Validation

Train

Validation

Test Result

  • CPU

Synthetic 5000

Method top-1% top-5% top-10% Kendal Time(s)
1 0.93±0.03 0.89±0.02 0.87±0.02 0.70±0.01 0.34±0.01
2 0.88±0.03 0.90±0.02 0.87±0.02 0.71±0.01 0.38±0.11
3 0.93±0.03 0.88±0.02 0.85±0.02 0.69±0.01 0.36±0.02
4 0.93±0.02 0.87±0.02 0.84±0.02 0.65±0.02 0.41±0.03
5 0.93±0.03 0.89±0.02 0.87±0.02 0.68±0.01 0.38±0.03
6 0.00±0.00 0.03±0.01 0.25±0.02 0.19±0.01 0.37±0.02

youtube

Method top-1% top-5% top-10% Kendal Time(s)
1 0.63 0.54 0.60 0.31 94.24
2 0.63 0.69 0.71 0.48 88.69
3 0.59 0.49 0.54 0.15 89.21
4 0.63 0.58 0.52 0.23 92.11
5 0.62 0.45 0.45 0.24 87.17
6 0.00 0.05 0.09 0.29 88.32

Amazon

Scale top-1% top-5% top-10% Kendal Time(s)
1 0.72 0.67 0.63 0.33 186.64
2
3
4
5
6