forked from localminimum/R-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
218 lines (198 loc) · 11.6 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: utf-8 -*-
#/usr/bin/python2
import tensorflow as tf
import numpy as np
from tensorflow.contrib.rnn import MultiRNNCell
from tensorflow.contrib.rnn import RNNCell
from params import Params
from zoneout import ZoneoutWrapper
'''
attention weights from https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf
W_u^Q.shape: (2 * attn_size, attn_size)
W_u^P.shape: (2 * attn_size, attn_size)
W_v^P.shape: (attn_size, attn_size)
W_g.shape: (4 * attn_size, 4 * attn_size)
W_h^P.shape: (2 * attn_size, attn_size)
W_v^Phat.shape: (2 * attn_size, attn_size)
W_h^a.shape: (2 * attn_size, attn_size)
W_v^Q.shape: (attn_size, attn_size)
'''
def get_attn_params(attn_size,initializer = tf.truncated_normal_initializer):
'''
Args:
attn_size: the size of attention specified in https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf
initializer: the author of the original paper used gaussian initialization however I found xavier converge faster
Returns:
params: A collection of parameters used throughout the layers
'''
with tf.variable_scope("attention_weights"):
params = {"W_u_Q":tf.get_variable("W_u_Q",dtype = tf.float32, shape = (2 * attn_size, attn_size), initializer = initializer()),
#"W_ru_Q":tf.get_variable("W_ru_Q",dtype = tf.float32, shape = (2 * attn_size, 2 * attn_size), initializer = initializer()),
"W_u_P":tf.get_variable("W_u_P",dtype = tf.float32, shape = (2 * attn_size, attn_size), initializer = initializer()),
"W_v_P":tf.get_variable("W_v_P",dtype = tf.float32, shape = (attn_size, attn_size), initializer = initializer()),
"W_v_P_2":tf.get_variable("W_v_P_2",dtype = tf.float32, shape = (2 * attn_size, attn_size), initializer = initializer()),
"W_g":tf.get_variable("W_g",dtype = tf.float32, shape = (4 * attn_size, 4 * attn_size), initializer = initializer()),
"W_h_P":tf.get_variable("W_h_P",dtype = tf.float32, shape = (2 * attn_size, attn_size), initializer = initializer()),
"W_v_Phat":tf.get_variable("W_v_Phat",dtype = tf.float32, shape = (2 * attn_size, attn_size), initializer = initializer()),
"W_h_a":tf.get_variable("W_h_a",dtype = tf.float32, shape = (2 * attn_size, attn_size), initializer = initializer()),
"W_v_Q":tf.get_variable("W_v_Q",dtype = tf.float32, shape = (attn_size, attn_size), initializer = initializer()),
"v":tf.get_variable("v",dtype = tf.float32, shape = (attn_size), initializer =initializer())}
return params
def encoding(word, char, word_embeddings, char_embeddings, scope = "embedding"):
with tf.variable_scope(scope):
word_encoding = tf.nn.embedding_lookup(word_embeddings, word)
char_encoding = tf.nn.embedding_lookup(char_embeddings, char)
return word_encoding, char_encoding
def apply_dropout(inputs, size = None, is_training = True):
'''
Implementation of Zoneout from https://arxiv.org/pdf/1606.01305.pdf
'''
if Params.dropout is None and Params.zoneout is None:
return inputs
if Params.zoneout is not None:
return ZoneoutWrapper(inputs, state_zoneout_prob= Params.zoneout, is_training = is_training)
elif is_training:
return tf.contrib.rnn.DropoutWrapper(inputs,
output_keep_prob = 1 - Params.dropout,
# variational_recurrent = True,
# input_size = size,
dtype = tf.float32)
else:
return inputs
def bidirectional_GRU(inputs, inputs_len, cell = None, cell_fn = tf.contrib.rnn.GRUCell, units = Params.attn_size, layers = 1, scope = "Bidirectional_GRU", output = 0, is_training = True, reuse = None):
'''
Bidirectional recurrent neural network with GRU cells.
Args:
inputs: rnn input of shape (batch_size, timestep, dim)
inputs_len: rnn input_len of shape (batch_size, )
cell: rnn cell of type RNN_Cell.
output: if 0, output returns rnn output for every timestep,
if 1, output returns concatenated state of backward and
forward rnn.
'''
with tf.variable_scope(scope, reuse = reuse):
if cell is not None:
(cell_fw, cell_bw) = cell
else:
shapes = inputs.get_shape().as_list()
if len(shapes) > 3:
inputs = tf.reshape(inputs,(shapes[0]*shapes[1],shapes[2],-1))
inputs_len = tf.reshape(inputs_len,(shapes[0]*shapes[1],))
# if no cells are provided, use standard GRU cell implementation
if layers > 1:
cell_fw = MultiRNNCell([apply_dropout(cell_fn(units), size = inputs.shape[-1] if i == 0 else units, is_training = is_training) for i in range(layers)])
cell_bw = MultiRNNCell([apply_dropout(cell_fn(units), size = inputs.shape[-1] if i == 0 else units, is_training = is_training) for i in range(layers)])
else:
cell_fw, cell_bw = [apply_dropout(cell_fn(units), size = inputs.shape[-1], is_training = is_training) for _ in range(2)]
outputs, states = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, inputs,
sequence_length = inputs_len,
dtype=tf.float32)
if output == 0:
return tf.concat(outputs, 2)
elif output == 1:
return tf.reshape(tf.concat(states,1),(Params.batch_size, shapes[1], 2*units))
def pointer_net(passage, passage_len, question, question_len, cell, params, scope = "pointer_network"):
'''
Answer pointer network as proposed in https://arxiv.org/pdf/1506.03134.pdf.
Args:
passage: RNN passage output from the bidirectional readout layer (batch_size, timestep, dim)
passage_len: variable lengths for passage length
question: RNN question output of shape (batch_size, timestep, dim) for question pooling
question_len: Variable lengths for question length
cell: rnn cell of type RNN_Cell.
params: Appropriate weight matrices for attention pooling computation
Returns:
softmax logits for the answer pointer of the beginning and the end of the answer span
'''
with tf.variable_scope(scope):
weights_q, weights_p = params
shapes = passage.get_shape().as_list()
initial_state = question_pooling(question, units = Params.attn_size, weights = weights_q, memory_len = question_len, scope = "question_pooling")
inputs = [passage, initial_state]
p1_logits = attention(inputs, Params.attn_size, weights_p, memory_len = passage_len, scope = "attention")
scores = tf.expand_dims(p1_logits, -1)
attention_pool = tf.reduce_sum(scores * passage,1)
_, state = cell(attention_pool, initial_state)
inputs = [passage, state]
p2_logits = attention(inputs, Params.attn_size, weights_p, memory_len = passage_len, scope = "attention", reuse = True)
return tf.stack((p1_logits,p2_logits),1)
def attention_rnn(inputs, inputs_len, units, attn_cell, bidirection = True, scope = "gated_attention_rnn", is_training = True):
with tf.variable_scope(scope):
if bidirection:
outputs = bidirectional_GRU(inputs,
inputs_len,
cell = attn_cell,
scope = scope + "_bidirectional",
output = 0,
is_training = is_training)
else:
outputs, _ = tf.nn.dynamic_rnn(attn_cell, inputs,
sequence_length = inputs_len,
dtype=tf.float32)
return outputs
def question_pooling(memory, units, weights, memory_len = None, scope = "question_pooling"):
with tf.variable_scope(scope):
shapes = memory.get_shape().as_list()
V_r = tf.get_variable("question_param", shape = (Params.max_q_len, units), initializer = tf.contrib.layers.xavier_initializer(), dtype = tf.float32)
inputs_ = [memory, V_r]
attn = attention(inputs_, units, weights, memory_len = memory_len, scope = "question_attention_pooling")
attn = tf.expand_dims(attn, -1)
return tf.reduce_sum(attn * memory, 1)
def gated_attention(memory, inputs, states, units, params, self_matching = False, memory_len = None, scope="gated_attention"):
with tf.variable_scope(scope):
weights, W_g = params
inputs_ = [memory, inputs]
states = tf.reshape(states,(Params.batch_size,Params.attn_size))
if not self_matching:
inputs_.append(states)
scores = attention(inputs_, units, weights, memory_len = memory_len)
scores = tf.expand_dims(scores,-1)
attention_pool = tf.reduce_sum(scores * memory, 1)
inputs = tf.concat((inputs,attention_pool),axis = 1)
g_t = tf.sigmoid(tf.matmul(inputs,W_g))
return g_t * inputs
def mask_attn_score(score, memory_sequence_length, score_mask_value = -1e8):
score_mask = tf.sequence_mask(
memory_sequence_length, maxlen=score.shape[1])
score_mask_values = score_mask_value * tf.ones_like(score)
return tf.where(score_mask, score, score_mask_values)
def attention(inputs, units, weights, scope = "attention", memory_len = None, reuse = None):
with tf.variable_scope(scope, reuse = reuse):
outputs_ = []
weights, v = weights
for i, (inp,w) in enumerate(zip(inputs,weights)):
shapes = inp.shape.as_list()
inp = tf.reshape(inp, (-1, shapes[-1]))
if w is None:
w = tf.get_variable("w_%d"%i, dtype = tf.float32, shape = [shapes[-1],Params.attn_size], initializer = tf.contrib.layers.xavier_initializer())
outputs = tf.matmul(inp, w)
# Hardcoded attention output reshaping. Equation (4), (8), (9) and (11) in the original paper.
if len(shapes) > 2:
outputs = tf.reshape(outputs, (shapes[0], shapes[1], -1))
elif len(shapes) == 2 and shapes[0] is Params.batch_size:
outputs = tf.reshape(outputs, (shapes[0],1,-1))
else:
outputs = tf.reshape(outputs, (1, shapes[0],-1))
outputs_.append(outputs)
outputs = sum(outputs_)
if Params.bias:
b = tf.get_variable("b", shape = outputs.shape[-1], dtype = tf.float32, initializer = tf.contrib.layers.xavier_initializer())
outputs += b
scores = tf.reduce_sum(tf.tanh(outputs) * v, [-1])
if memory_len is not None:
scores = mask_attn_score(scores, memory_len)
return tf.nn.softmax(scores) # all attention output is softmaxed now
def cross_entropy(output, target):
cross_entropy = target * tf.log(output + 1e-8)
cross_entropy = -tf.reduce_sum(cross_entropy, 2) # sum across passage timestep
cross_entropy = tf.reduce_mean(cross_entropy, 1) # average across pointer networks output
return tf.reduce_mean(cross_entropy) # average across batch size
def total_params():
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
variable_parametes = 1
for dim in shape:
variable_parametes *= dim.value
total_parameters += variable_parametes
print("Total number of trainable parameters: {}".format(total_parameters))