forked from localminimum/R-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzoneout.py
42 lines (35 loc) · 1.55 KB
/
zoneout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# from ipywidgets import interact
import tensorflow as tf
import numpy as np
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import variable_scope
# Wrapper for the TF RNN cell
# For an LSTM, the 'cell' is a tuple containing state and cell
# We use TF's dropout to implement zoneout
class ZoneoutWrapper(tf.nn.rnn_cell.RNNCell):
"""Operator adding zoneout to all states (states+cells) of the given cell."""
def __init__(self, cell, state_zoneout_prob, is_training=True, seed=None):
if not isinstance(cell, tf.nn.rnn_cell.RNNCell):
raise TypeError("The parameter cell is not an RNNCell.")
if (isinstance(state_zoneout_prob, float) and
not (state_zoneout_prob >= 0.0 and state_zoneout_prob <= 1.0)):
raise ValueError("Parameter zoneout_prob must be between 0 and 1: %d"
% zoneout_prob)
self._cell = cell
self._zoneout_prob = state_zoneout_prob
self._seed = seed
self.is_training = is_training
@property
def state_size(self):
return self._cell.state_size
@property
def output_size(self):
return self._cell.output_size
def __call__(self, inputs, state, scope=None):
output, new_state = self._cell(inputs, state, scope)
if self.is_training:
new_state = (1 - self._zoneout_prob) * tf.nn.dropout(
new_state - state, (1 - self._zoneout_prob), seed=self._seed) + state
else:
new_state = self._zoneout_prob * state + (1 - self._zoneout_prob) * new_state
return output, new_state