-
Notifications
You must be signed in to change notification settings - Fork 1
/
region_seg.m
210 lines (172 loc) · 6.65 KB
/
region_seg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
% Region Based Active Contour Segmentation
%
% seg = region_seg(I,init_mask,max_its,alpha,display)
%
% Inputs: I 2D image
% init_mask Initialization (1 = foreground, 0 = bg)
% max_its Number of iterations to run segmentation for
% alpha (optional) Weight of smoothing term
% higer = smoother. default = 0.2
% display (optional) displays intermediate outputs
% default = true
%
% Outputs: seg Final segmentation mask (1=fg, 0=bg)
%
% Description: This code implements the paper: "Active Contours Without
% Edges" By Chan Vese. This is a nice way to segment images whose
% foregrounds and backgrounds are statistically different and homogeneous.
%
% Example:
% img = imread('tire.tif');
% m = zeros(size(img));
% m(33:33+117,44:44+128) = 1;
% seg = region_seg(img,m,500);
%
% Coded by: Shawn Lankton (www.shawnlankton.com)
% Modified to incorporate wavelet features by: Junyu Chen ([email protected])
%------------------------------------------------------------------------
function [seg,tmp] = region_seg(I,init_mask,max_its,alpha,display,feature_vec)
%-- default value for parameter alpha is .1
if(~exist('alpha','var'))
alpha = .2;
end
%-- default behavior is to display intermediate outputs
if(~exist('display','var'))
display = true;
end
%-- ensures image is 2D double matrix
I = im2graydouble(I);
%-- Create a signed distance map (SDF) from mask
phi = mask2phi(init_mask);
tmp = zeros(size(phi));
tmp(round(size(phi,1)/2)-5:round(size(phi,1)/2)+5,round(size(phi,2)/2)-5:round(size(phi,1)/2)+5) = 1;
tmp = tmp .* I;
%--main loop
for its = 1:max_its % Note: no automatic convergence test
idx = find(phi <= 1.2 & phi >= -1.2); %get the curve's narrow band
%-- find interior and exterior mean
upts = find(phi<=0); % interior points
vpts = find(phi>0); % exterior points
u = sum(I(upts))/(length(upts)+eps); % interior mean
v = sum(I(vpts))/(length(vpts)+eps); % exterior mean
u_bar = sum(tmp(upts))/(length(upts)+eps); % interior mean
v_bar = sum(tmp(vpts))/(length(vpts)+eps); % exterior mean
coef = 0;
u_prim = mean(feature_vec(upts,:),1);
v_prim = mean(feature_vec(vpts,:),1);
F = sum((feature_vec(idx,:) - u_prim).^2,2) - sum((feature_vec(idx,:) - v_prim).^2,2);
%F = ((I(idx)-u).^2+coef.*(tmp(idx)-u_bar).^2)-((I(idx)-v).^2 + coef.*(tmp(idx)-v_bar).^2); % force from image information
curvature = get_curvature(phi,idx); % force from curvature penalty
dphidt = F./max(abs(F)) + alpha*curvature; % gradient descent to minimize energy
%-- maintain the CFL condition
dt = .45/(max(dphidt)+eps);
%-- evolve the curve
phi(idx) = phi(idx) + dt.*dphidt;
%-- Keep SDF smooth
phi = sussman(phi, .5);
%-- intermediate output
if((display>0)&&(mod(its,20) == 0))
showCurveAndPhi(I,phi,its);
end
end
%-- final output
if(display)
showCurveAndPhi(I,phi,its);
end
%-- make mask from SDF
seg = phi<=0; %-- Get mask from levelset
%---------------------------------------------------------------------
%---------------------------------------------------------------------
%-- AUXILIARY FUNCTIONS ----------------------------------------------
%---------------------------------------------------------------------
%---------------------------------------------------------------------
%-- Displays the image with curve superimposed
function showCurveAndPhi(I, phi, i)
imshow(I,'initialmagnification',200,'displayrange',[]); hold on;
contour(phi, [0 0], 'g','LineWidth',2);
%contour(phi, [0 0], 'k')%,'LineWidth',2);
hold off; title([num2str(i) ' Iterations']); drawnow;
%-- converts a mask to a SDF
function phi = mask2phi(init_a)
phi=bwdist(init_a)-bwdist(1-init_a)+im2double(init_a)-.5;
%-- compute curvature along SDF
function curvature = get_curvature(phi,idx)
[dimy, dimx] = size(phi);
[y x] = ind2sub([dimy,dimx],idx); % get subscripts
%-- get subscripts of neighbors
ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1;
%-- bounds checking
ym1(ym1<1) = 1; xm1(xm1<1) = 1;
yp1(yp1>dimy)=dimy; xp1(xp1>dimx) = dimx;
%-- get indexes for 8 neighbors
idup = sub2ind(size(phi),yp1,x);
iddn = sub2ind(size(phi),ym1,x);
idlt = sub2ind(size(phi),y,xm1);
idrt = sub2ind(size(phi),y,xp1);
idul = sub2ind(size(phi),yp1,xm1);
idur = sub2ind(size(phi),yp1,xp1);
iddl = sub2ind(size(phi),ym1,xm1);
iddr = sub2ind(size(phi),ym1,xp1);
%-- get central derivatives of SDF at x,y
phi_x = -phi(idlt)+phi(idrt);
phi_y = -phi(iddn)+phi(idup);
phi_xx = phi(idlt)-2*phi(idx)+phi(idrt);
phi_yy = phi(iddn)-2*phi(idx)+phi(idup);
phi_xy = -0.25*phi(iddl)-0.25*phi(idur)...
+0.25*phi(iddr)+0.25*phi(idul);
phi_x2 = phi_x.^2;
phi_y2 = phi_y.^2;
%-- compute curvature (Kappa)
curvature = ((phi_x2.*phi_yy + phi_y2.*phi_xx - 2*phi_x.*phi_y.*phi_xy)./...
(phi_x2 + phi_y2 +eps).^(3/2)).*(phi_x2 + phi_y2).^(1/2);
%-- Converts image to one channel (grayscale) double
function img = im2graydouble(img)
[dimy, dimx, c] = size(img);
if(isfloat(img)) % image is a double
if(c==3)
img = rgb2gray(uint8(img));
end
else % image is a int
if(c==3)
img = rgb2gray(img);
end
img = double(img);
end
%-- level set re-initialization by the sussman method
function D = sussman(D, dt)
% forward/backward differences
a = D - shiftR(D); % backward
b = shiftL(D) - D; % forward
c = D - shiftD(D); % backward
d = shiftU(D) - D; % forward
a_p = a; a_n = a; % a+ and a-
b_p = b; b_n = b;
c_p = c; c_n = c;
d_p = d; d_n = d;
a_p(a < 0) = 0;
a_n(a > 0) = 0;
b_p(b < 0) = 0;
b_n(b > 0) = 0;
c_p(c < 0) = 0;
c_n(c > 0) = 0;
d_p(d < 0) = 0;
d_n(d > 0) = 0;
dD = zeros(size(D));
D_neg_ind = find(D < 0);
D_pos_ind = find(D > 0);
dD(D_pos_ind) = sqrt(max(a_p(D_pos_ind).^2, b_n(D_pos_ind).^2) ...
+ max(c_p(D_pos_ind).^2, d_n(D_pos_ind).^2)) - 1;
dD(D_neg_ind) = sqrt(max(a_n(D_neg_ind).^2, b_p(D_neg_ind).^2) ...
+ max(c_n(D_neg_ind).^2, d_p(D_neg_ind).^2)) - 1;
D = D - dt .* sussman_sign(D) .* dD;
%-- whole matrix derivatives
function shift = shiftD(M)
shift = shiftR(M')';
function shift = shiftL(M)
shift = [ M(:,2:size(M,2)) M(:,size(M,2)) ];
function shift = shiftR(M)
shift = [ M(:,1) M(:,1:size(M,2)-1) ];
function shift = shiftU(M)
shift = shiftL(M')';
function S = sussman_sign(D)
S = D ./ sqrt(D.^2 + 1);