Skip to content

Latest commit

 

History

History
94 lines (51 loc) · 5.67 KB

Tutorials.md

File metadata and controls

94 lines (51 loc) · 5.67 KB

Tutorials操作指南

欢迎来到LangGraph指南!这些笔记通过创建各种大语言agent和应用介绍了LangGraph。

快速入门点击进入

通过一个完整的快速入门学习LangGraph的基础,你将可以从零开始构建一个agent.

用户案例

从特定场景的设计和相同的设计模式的Graph示例中学习。

聊天机器人

多agent系统

  • 合并: 使两个代理能够协作完成一项任务

  • 管理: 使用LLM来编排和委派给各个agent

  • Hierarchical Teams: 编排嵌套的agent团队来解决问题

RAG

  • Agentic RAG: Use an agent to figure out how to retrieve the most relevant information before using the retrieved information to answer the user's question.

  • Adaptive RAG

    : Adaptive RAG is a strategy for RAG that unites (1) query analysis with (2) active / self-corrective RAG. Implementation of:

    https://arxiv.org/abs/2403.14403

  • Corrective RAG

    : Uses an LLM to grade the quality of the retrieved information from the given source, and if the quality is low, it will try to retrieve the information from another source. Implementation of:

    https://arxiv.org/pdf/2401.15884.pdf

  • Self-RAG

    : Self-RAG is a strategy for RAG that incorporates self-reflection / self-grading on retrieved documents and generations. Implementation of

    https://arxiv.org/abs/2310.11511

    .

  • SQL Agent: Build a SQL agent that can answer questions about a SQL database.

Agent 结构

参考文档:Agent Architectures

多Agent系统

参考文档:Multi-Agent Systems

  • Network: Enable two or more agents to collaborate on a task
  • Supervisor: Use an LLM to orchestrate and delegate to individual agents
  • Hierarchical Teams: Orchestrate nested teams of agents to solve problems

计划Agent

参考文档:Planning Agents

Reflection & Critique

Evaluation

  • Agent-based: Evaluate chatbots via simulated user interactions
  • In LangSmith: Evaluate chatbots in LangSmith over a dialog dataset