-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_bma.py
68 lines (60 loc) · 2.25 KB
/
test_bma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from astroARIADNE.fitter import Fitter
from astroARIADNE.plotter import SEDPlotter
from astroARIADNE.star import Star
if __name__ == '__main__':
ra = 75.795
dec = -30.399
starname = 'NGTS-6'
gaia_id = 4875693023844840448
s = Star(starname, ra, dec, g_id=gaia_id)
# Output setup
out_folder = 'YOUR OUTPUT FOLDER HERE'
in_file = out_folder + '/BMA.pkl' # used as input for plotting
plots_out_folder = out_folder + '/plots'
# Setup parameters
engine = 'dynesty' # Only dynesty is available for BMA
nlive = 100 # number of live points to use
dlogz = 0.5 # evidence tolerance
bound = 'multi' # Unit cube bounds. Options are multi, single
sample = 'rwalk' # Sampling method. Options are rwalk, unif
threads = 4 # Number of threads to use.
dynamic = False # Use dynamic nested sampling?
setup = [engine, nlive, dlogz, bound, sample, threads, dynamic]
models = [
'phoenix',
'btsettl',
'btnextgen',
'btcond',
'kurucz',
'ck04',
]
# Now to setup the fitter and run the modelling.
f = Fitter()
f.star = s
f.setup = setup
f.norm = False # fit normalization constant instead of radius + distance
f.av_law = 'fitzpatrick'
f.verbose = True
f.out_folder = out_folder
f.bma = True
f.models = models
f.n_samples = 100000 # If set as None it will choose automatically.
f.prior_setup = {
'teff': ('rave'),
'logg': ('default'),
'z': ('default'),
'dist': ('default'),
'rad': ('default'),
'Av': ('default')
}
f.initialize()
f.fit_bma() # Begin fit!
# Setting up plotter, which is independent to the main fitting routine
# Bear in mind this will only work if you have downloaded the models
# And have set up the ARIADNE_MODELS environment variable!
artist = SEDPlotter(in_file, plots_out_folder, pdf=True)
artist.plot_SED_no_model() # Plots the stellar SED without the model
artist.plot_SED() # Plots stellar SED with model included
artist.plot_bma_hist() # Plots bayesian model averaging histograms
artist.plot_bma_HR(10) # Plots HR diagram with 10 samples from posterior
artist.plot_corner() # Corner plot of the posterior parameters