forked from CUAI/Non-Homophily-Large-Scale
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
256 lines (199 loc) · 8.63 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
import torch.nn.functional as F
import numpy as np
from collections import defaultdict
from scipy import sparse as sp
from sklearn.metrics import roc_auc_score, f1_score
from torch_sparse import SparseTensor
from google_drive_downloader import GoogleDriveDownloader as gdd
def rand_train_test_idx(label, train_prop=.5, valid_prop=.25, ignore_negative=True):
""" randomly splits label into train/valid/test splits """
if ignore_negative:
labeled_nodes = torch.where(label != -1)[0]
else:
labeled_nodes = label
n = labeled_nodes.shape[0]
train_num = int(n * train_prop)
valid_num = int(n * valid_prop)
perm = torch.as_tensor(np.random.permutation(n))
train_indices = perm[:train_num]
val_indices = perm[train_num:train_num + valid_num]
test_indices = perm[train_num + valid_num:]
if not ignore_negative:
return train_indices, val_indices, test_indices
train_idx = labeled_nodes[train_indices]
valid_idx = labeled_nodes[val_indices]
test_idx = labeled_nodes[test_indices]
return train_idx, valid_idx, test_idx
def even_quantile_labels(vals, nclasses, verbose=True):
""" partitions vals into nclasses by a quantile based split,
where the first class is less than the 1/nclasses quantile,
second class is less than the 2/nclasses quantile, and so on
vals is np array
returns an np array of int class labels
"""
label = -1 * np.ones(vals.shape[0], dtype=np.int)
interval_lst = []
lower = -np.inf
for k in range(nclasses - 1):
upper = np.nanquantile(vals, (k + 1) / nclasses)
interval_lst.append((lower, upper))
inds = (vals >= lower) * (vals < upper)
label[inds] = k
lower = upper
label[vals >= lower] = nclasses - 1
interval_lst.append((lower, np.inf))
if verbose:
print('Class Label Intervals:')
for class_idx, interval in enumerate(interval_lst):
print(f'Class {class_idx}: [{interval[0]}, {interval[1]})]')
return label
def to_planetoid(dataset):
"""
Takes in a NCDataset and returns the dataset in H2GCN Planetoid form, as follows:
x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object;
tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object;
allx => the feature vectors of both labeled and unlabeled training instances
(a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
y => the one-hot labels of the labeled training instances as numpy.ndarray object;
ty => the one-hot labels of the test instances as numpy.ndarray object;
ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict
object;
split_idx => The ogb dictionary that contains the train, valid, test splits
"""
split_idx = dataset.get_idx_split('random', 0.25)
train_idx, valid_idx, test_idx = split_idx["train"], split_idx["valid"], split_idx["test"]
graph, label = dataset[0]
label = torch.squeeze(label)
print("generate x")
x = graph['node_feat'][train_idx].numpy()
x = sp.csr_matrix(x)
tx = graph['node_feat'][test_idx].numpy()
tx = sp.csr_matrix(tx)
allx = graph['node_feat'].numpy()
allx = sp.csr_matrix(allx)
y = F.one_hot(label[train_idx]).numpy()
ty = F.one_hot(label[test_idx]).numpy()
ally = F.one_hot(label).numpy()
edge_index = graph['edge_index'].T
graph = defaultdict(list)
for i in range(0, label.shape[0]):
graph[i].append(i)
for start_edge, end_edge in edge_index:
graph[start_edge.item()].append(end_edge.item())
return x, tx, allx, y, ty, ally, graph, split_idx
def to_sparse_tensor(edge_index, edge_feat, num_nodes):
""" converts the edge_index into SparseTensor
"""
num_edges = edge_index.size(1)
(row, col), N, E = edge_index, num_nodes, num_edges
perm = (col * N + row).argsort()
row, col = row[perm], col[perm]
value = edge_feat[perm]
adj_t = SparseTensor(row=col, col=row, value=value,
sparse_sizes=(N, N), is_sorted=True)
# Pre-process some important attributes.
adj_t.storage.rowptr()
adj_t.storage.csr2csc()
return adj_t
def normalize(edge_index):
""" normalizes the edge_index
"""
adj_t = edge_index.set_diag()
deg = adj_t.sum(dim=1).to(torch.float)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
adj_t = deg_inv_sqrt.view(-1, 1) * adj_t * deg_inv_sqrt.view(1, -1)
return adj_t
def gen_normalized_adjs(dataset):
""" returns the normalized adjacency matrix
"""
row, col = dataset.graph['edge_index']
N = dataset.graph['num_nodes']
adj = SparseTensor(row=row, col=col, sparse_sizes=(N, N))
deg = adj.sum(dim=1).to(torch.float)
D_isqrt = deg.pow(-0.5)
D_isqrt[D_isqrt == float('inf')] = 0
DAD = D_isqrt.view(-1,1) * adj * D_isqrt.view(1,-1)
DA = D_isqrt.view(-1,1) * D_isqrt.view(-1,1) * adj
AD = adj * D_isqrt.view(1,-1) * D_isqrt.view(1,-1)
return DAD, DA, AD
def eval_acc(y_true, y_pred):
acc_list = []
y_true = y_true.detach().cpu().numpy()
y_pred = y_pred.argmax(dim=-1, keepdim=True).detach().cpu().numpy()
for i in range(y_true.shape[1]):
is_labeled = y_true[:, i] == y_true[:, i]
correct = y_true[is_labeled, i] == y_pred[is_labeled, i]
acc_list.append(float(np.sum(correct))/len(correct))
return sum(acc_list)/len(acc_list)
def eval_rocauc(y_true, y_pred):
""" adapted from ogb
https://github.com/snap-stanford/ogb/blob/master/ogb/nodeproppred/evaluate.py"""
rocauc_list = []
y_true = y_true.detach().cpu().numpy()
if y_true.shape[1] == 1:
# use the predicted class for single-class classification
y_pred = F.softmax(y_pred, dim=-1)[:,1].unsqueeze(1).cpu().numpy()
else:
y_pred = y_pred.detach().cpu().numpy()
for i in range(y_true.shape[1]):
# AUC is only defined when there is at least one positive data.
if np.sum(y_true[:, i] == 1) > 0 and np.sum(y_true[:, i] == 0) > 0:
is_labeled = y_true[:, i] == y_true[:, i]
score = roc_auc_score(y_true[is_labeled, i], y_pred[is_labeled, i])
rocauc_list.append(score)
if len(rocauc_list) == 0:
raise RuntimeError(
'No positively labeled data available. Cannot compute ROC-AUC.')
return sum(rocauc_list)/len(rocauc_list)
@torch.no_grad()
def evaluate(model, dataset, split_idx, eval_func, result=None, sampling=False, subgraph_loader=None):
if result is not None:
out = result
else:
model.eval()
if not sampling:
out = model(dataset)
else:
out = model.inference(dataset, subgraph_loader)
train_acc = eval_func(
dataset.label[split_idx['train']], out[split_idx['train']])
valid_acc = eval_func(
dataset.label[split_idx['valid']], out[split_idx['valid']])
test_acc = eval_func(
dataset.label[split_idx['test']], out[split_idx['test']])
return train_acc, valid_acc, test_acc, out
def load_fixed_splits(dataset, sub_dataset):
""" loads saved fixed splits for dataset
"""
name = dataset
if sub_dataset and sub_dataset != 'None':
name += f'-{sub_dataset}'
if not os.path.exists(f'./data/splits/{name}-splits.npy'):
assert dataset in splits_drive_url.keys()
gdd.download_file_from_google_drive(
file_id=splits_drive_url[dataset], \
dest_path=f'./data/splits/{name}-splits.npy', showsize=True)
splits_lst = np.load(f'./data/splits/{name}-splits.npy', allow_pickle=True)
for i in range(len(splits_lst)):
for key in splits_lst[i]:
if not torch.is_tensor(splits_lst[i][key]):
splits_lst[i][key] = torch.as_tensor(splits_lst[i][key])
return splits_lst
dataset_drive_url = {
'twitch-gamer_feat' : '1fA9VIIEI8N0L27MSQfcBzJgRQLvSbrvR',
'twitch-gamer_edges' : '1XLETC6dG3lVl7kDmytEJ52hvDMVdxnZ0',
'snap-patents' : '1ldh23TSY1PwXia6dU0MYcpyEgX-w3Hia',
'pokec' : '1dNs5E7BrWJbgcHeQ_zuy5Ozp2tRCWG0y',
'yelp-chi': '1fAXtTVQS4CfEk4asqrFw9EPmlUPGbGtJ',
'wiki_views': '1p5DlVHrnFgYm3VsNIzahSsvCD424AyvP', # Wiki 1.9M
'wiki_edges': '14X7FlkjrlUgmnsYtPwdh-gGuFla4yb5u', # Wiki 1.9M
'wiki_features': '1ySNspxbK-snNoAZM7oxiWGvOnTRdSyEK' # Wiki 1.9M
}
splits_drive_url = {
'snap-patents' : '12xbBRqd8mtG_XkNLH8dRRNZJvVM4Pw-N',
'pokec' : '1ZhpAiyTNc0cE_hhgyiqxnkKREHK7MK-_',
}