forked from CUAI/Non-Homophily-Large-Scale
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
456 lines (375 loc) · 17.2 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
from collections import defaultdict
import numpy as np
import torch
import torch.nn.functional as F
import scipy
import scipy.io
import pickle
import pandas as pd
from sklearn.preprocessing import label_binarize
from google_drive_downloader import GoogleDriveDownloader as gdd
from os import path
import os
from load_data import load_twitch, load_fb100, load_twitch_gamer, DATAPATH
from data_utils import rand_train_test_idx, even_quantile_labels, to_sparse_tensor, dataset_drive_url
from homophily import our_measure, edge_homophily_edge_idx
from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
from torch_sparse import SparseTensor
from ogb.nodeproppred import NodePropPredDataset
# arxiv-year doesn't seem to mind ^^^, but the other ogb datasets prefer this
from ogb.nodeproppred import PygNodePropPredDataset
class NCDataset(object):
def __init__(self, name, root=f'{DATAPATH}'):
"""
based off of ogb NodePropPredDataset
https://github.com/snap-stanford/ogb/blob/master/ogb/nodeproppred/dataset.py
Gives torch tensors instead of numpy arrays
- name (str): name of the dataset
- root (str): root directory to store the dataset folder
- meta_dict: dictionary that stores all the meta-information about data. Default is None,
but when something is passed, it uses its information. Useful for debugging for external contributers.
Usage after construction:
split_idx = dataset.get_idx_split()
train_idx, valid_idx, test_idx = split_idx["train"], split_idx["valid"], split_idx["test"]
graph, label = dataset[0]
Where the graph is a dictionary of the following form:
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
For additional documentation, see OGB Library-Agnostic Loader https://ogb.stanford.edu/docs/nodeprop/
"""
self.name = name # original name, e.g., ogbn-proteins
self.graph = {}
self.label = None
def get_idx_split(self, split_type='random', train_prop=.5, valid_prop=.25):
"""
train_prop: The proportion of dataset for train split. Between 0 and 1.
valid_prop: The proportion of dataset for validation split. Between 0 and 1.
"""
if split_type == 'random':
ignore_negative = False if self.name == 'ogbn-proteins' else True
train_idx, valid_idx, test_idx = rand_train_test_idx(
self.label, train_prop=train_prop, valid_prop=valid_prop, ignore_negative=ignore_negative)
split_idx = {'train': train_idx,
'valid': valid_idx,
'test': test_idx}
return split_idx
def __getitem__(self, idx):
assert idx == 0, 'This dataset has only one graph'
return self.graph, self.label
def __len__(self):
return 1
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, len(self))
def load_nc_dataset(dataname, sub_dataname=''):
""" Loader for NCDataset, returns NCDataset. """
if dataname == 'twitch-e':
# twitch-explicit graph
if sub_dataname not in ('DE', 'ENGB', 'ES', 'FR', 'PTBR', 'RU', 'TW'):
print('Invalid sub_dataname, deferring to DE graph')
sub_dataname = 'DE'
dataset = load_twitch_dataset(sub_dataname)
elif dataname == 'fb100':
if sub_dataname not in ('Penn94', 'Amherst41', 'Cornell5', 'Johns Hopkins55', 'Reed98'):
print('Invalid sub_dataname, deferring to Penn94 graph')
sub_dataname = 'Penn94'
dataset = load_fb100_dataset(sub_dataname)
elif dataname == 'ogbn-proteins':
dataset = load_proteins_dataset()
elif dataname == 'deezer-europe':
dataset = load_deezer_dataset()
elif dataname == 'arxiv-year':
dataset = load_arxiv_year_dataset()
elif dataname == 'pokec':
dataset = load_pokec_mat()
elif dataname == 'snap-patents':
dataset = load_snap_patents_mat()
elif dataname == 'yelp-chi':
dataset = load_yelpchi_dataset()
elif dataname in ('ogbn-arxiv', 'ogbn-products'):
dataset = load_ogb_dataset(dataname)
elif dataname in ('Cora', 'CiteSeer', 'PubMed'):
dataset = load_planetoid_dataset(dataname)
elif dataname in ('chameleon', 'cornell', 'film', 'squirrel', 'texas', 'wisconsin'):
dataset = load_geom_gcn_dataset(dataname)
elif dataname == "genius":
dataset = load_genius()
elif dataname == "twitch-gamer":
dataset = load_twitch_gamer_dataset()
elif dataname == "wiki":
dataset = load_wiki()
else:
raise ValueError('Invalid dataname')
return dataset
def load_twitch_dataset(lang):
assert lang in ('DE', 'ENGB', 'ES', 'FR', 'PTBR', 'RU', 'TW'), 'Invalid dataset'
A, label, features = load_twitch(lang)
dataset = NCDataset(lang)
edge_index = torch.tensor(A.nonzero(), dtype=torch.long)
node_feat = torch.tensor(features, dtype=torch.float)
num_nodes = node_feat.shape[0]
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
dataset.label = torch.tensor(label)
return dataset
def load_fb100_dataset(filename):
A, metadata = load_fb100(filename)
dataset = NCDataset(filename)
edge_index = torch.tensor(A.nonzero(), dtype=torch.long)
metadata = metadata.astype(np.int)
label = metadata[:, 1] - 1 # gender label, -1 means unlabeled
# make features into one-hot encodings
feature_vals = np.hstack(
(np.expand_dims(metadata[:, 0], 1), metadata[:, 2:]))
features = np.empty((A.shape[0], 0))
for col in range(feature_vals.shape[1]):
feat_col = feature_vals[:, col]
feat_onehot = label_binarize(feat_col, classes=np.unique(feat_col))
features = np.hstack((features, feat_onehot))
node_feat = torch.tensor(features, dtype=torch.float)
num_nodes = metadata.shape[0]
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
dataset.label = torch.tensor(label)
return dataset
def load_deezer_dataset():
filename = 'deezer-europe'
dataset = NCDataset(filename)
deezer = scipy.io.loadmat(f'{DATAPATH}deezer-europe.mat')
A, label, features = deezer['A'], deezer['label'], deezer['features']
edge_index = torch.tensor(A.nonzero(), dtype=torch.long)
node_feat = torch.tensor(features.todense(), dtype=torch.float)
label = torch.tensor(label, dtype=torch.long).squeeze()
num_nodes = label.shape[0]
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
dataset.label = label
return dataset
def load_arxiv_year_dataset(nclass=5):
filename = 'arxiv-year'
dataset = NCDataset(filename)
ogb_dataset = NodePropPredDataset(name='ogbn-arxiv')
dataset.graph = ogb_dataset.graph
dataset.graph['edge_index'] = torch.as_tensor(dataset.graph['edge_index'])
dataset.graph['node_feat'] = torch.as_tensor(dataset.graph['node_feat'])
label = even_quantile_labels(
dataset.graph['node_year'].flatten(), nclass, verbose=False)
dataset.label = torch.as_tensor(label).reshape(-1, 1)
return dataset
def load_proteins_dataset():
# ogb_dataset = NodePropPredDataset(name='ogbn-proteins')
ogb_dataset = PygNodePropPredDataset(name='ogbn-proteins')
dataset = NCDataset('ogbn-proteins')
def protein_orig_split(**kwargs):
split_idx = ogb_dataset.get_idx_split()
return {'train': torch.as_tensor(split_idx['train']),
'valid': torch.as_tensor(split_idx['valid']),
'test': torch.as_tensor(split_idx['test'])}
dataset.get_idx_split = protein_orig_split
# dataset.graph, dataset.label = ogb_dataset.graph, ogb_dataset.labels
# dataset.graph['edge_index'] = torch.as_tensor(dataset.graph['edge_index'])
# dataset.graph['edge_feat'] = torch.as_tensor(dataset.graph['edge_feat'])
# dataset.label = torch.as_tensor(dataset.label)
dataset.graph['edge_index'] = ogb_dataset.data.edge_index
dataset.graph['edge_feat'] = ogb_dataset.data.edge_attr
dataset.graph['node_feat'] = ogb_dataset.data.x
dataset.graph['num_nodes'] = ogb_dataset.data.num_nodes
dataset.label = ogb_dataset.data.y
return dataset
def load_ogb_dataset(name):
dataset = NCDataset(name)
# ogb_dataset = NodePropPredDataset(name=name)
# dataset.graph = ogb_dataset.graph
# dataset.graph['edge_index'] = torch.as_tensor(dataset.graph['edge_index'])
# dataset.graph['node_feat'] = torch.as_tensor(dataset.graph['node_feat'])
ogb_dataset = PygNodePropPredDataset(name=name)
dataset.graph = ogb_dataset.data.to_dict() # key change to make it look like orig dict interface
dataset.graph['edge_index'] = ogb_dataset.data.edge_index
dataset.graph['edge_feat'] = ogb_dataset.data.edge_attr
dataset.graph['node_feat'] = ogb_dataset.data.x
dataset.graph['num_nodes'] = ogb_dataset.data.num_nodes
def ogb_idx_to_tensor(**kwargs):
split_idx = ogb_dataset.get_idx_split()
tensor_split_idx = {key: torch.as_tensor(
split_idx[key]) for key in split_idx}
return tensor_split_idx
dataset.get_idx_split = ogb_idx_to_tensor # ogb_dataset.get_idx_split
# dataset.label = torch.as_tensor(ogb_dataset.labels).reshape(-1, 1)
dataset.label = ogb_dataset.data.y
return dataset
def load_pokec_mat():
""" requires pokec.mat
"""
if not path.exists(f'{DATAPATH}pokec.mat'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['pokec'], \
dest_path=f'{DATAPATH}pokec.mat', showsize=True)
fulldata = scipy.io.loadmat(f'{DATAPATH}pokec.mat')
dataset = NCDataset('pokec')
edge_index = torch.tensor(fulldata['edge_index'], dtype=torch.long)
node_feat = torch.tensor(fulldata['node_feat']).float()
num_nodes = int(fulldata['num_nodes'])
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
label = fulldata['label'].flatten()
dataset.label = torch.tensor(label, dtype=torch.long)
return dataset
def load_snap_patents_mat(nclass=5):
if not path.exists(f'{DATAPATH}snap_patents.mat'):
p = dataset_drive_url['snap-patents']
print(f"Snap patents url: {p}")
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['snap-patents'], \
dest_path=f'{DATAPATH}snap_patents.mat', showsize=True)
fulldata = scipy.io.loadmat(f'{DATAPATH}snap_patents.mat')
dataset = NCDataset('snap_patents')
edge_index = torch.tensor(fulldata['edge_index'], dtype=torch.long)
node_feat = torch.tensor(
fulldata['node_feat'].todense(), dtype=torch.float)
num_nodes = int(fulldata['num_nodes'])
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
years = fulldata['years'].flatten()
label = even_quantile_labels(years, nclass, verbose=False)
dataset.label = torch.tensor(label, dtype=torch.long)
return dataset
def load_yelpchi_dataset():
if not path.exists(f'{DATAPATH}YelpChi.mat'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['yelp-chi'], \
dest_path=f'{DATAPATH}YelpChi.mat', showsize=True)
fulldata = scipy.io.loadmat(f'{DATAPATH}YelpChi.mat')
A = fulldata['homo']
edge_index = np.array(A.nonzero())
node_feat = fulldata['features']
label = np.array(fulldata['label'], dtype=np.int).flatten()
num_nodes = node_feat.shape[0]
dataset = NCDataset('YelpChi')
edge_index = torch.tensor(edge_index, dtype=torch.long)
node_feat = torch.tensor(node_feat.todense(), dtype=torch.float)
dataset.graph = {'edge_index': edge_index,
'node_feat': node_feat,
'edge_feat': None,
'num_nodes': num_nodes}
label = torch.tensor(label, dtype=torch.long)
dataset.label = label
return dataset
def load_planetoid_dataset(name):
torch_dataset = Planetoid(root=f'{DATAPATH}/Planetoid',
name=name)
data = torch_dataset[0]
edge_index = data.edge_index
node_feat = data.x
label = data.y
num_nodes = data.num_nodes
print(f"Num nodes: {num_nodes}")
dataset = NCDataset(name)
dataset.train_idx = torch.where(data.train_mask)[0]
dataset.valid_idx = torch.where(data.val_mask)[0]
dataset.test_idx = torch.where(data.test_mask)[0]
dataset.graph = {'edge_index': edge_index,
'node_feat': node_feat,
'edge_feat': None,
'num_nodes': num_nodes}
def planetoid_orig_split(**kwargs):
return {'train': torch.as_tensor(dataset.train_idx),
'valid': torch.as_tensor(dataset.valid_idx),
'test': torch.as_tensor(dataset.test_idx)}
dataset.get_idx_split = planetoid_orig_split
dataset.label = label
return dataset
def load_geom_gcn_dataset(name):
fulldata = scipy.io.loadmat(f'{DATAPATH}/{name}.mat')
edge_index = fulldata['edge_index']
node_feat = fulldata['node_feat']
label = np.array(fulldata['label'], dtype=np.int).flatten()
num_nodes = node_feat.shape[0]
dataset = NCDataset(name)
edge_index = torch.tensor(edge_index, dtype=torch.long)
node_feat = torch.tensor(node_feat, dtype=torch.float)
dataset.graph = {'edge_index': edge_index,
'node_feat': node_feat,
'edge_feat': None,
'num_nodes': num_nodes}
label = torch.tensor(label, dtype=torch.long)
dataset.label = label
return dataset
def load_genius():
filename = 'genius'
dataset = NCDataset(filename)
fulldata = scipy.io.loadmat(f'data/genius.mat')
edge_index = torch.tensor(fulldata['edge_index'], dtype=torch.long)
node_feat = torch.tensor(fulldata['node_feat'], dtype=torch.float)
label = torch.tensor(fulldata['label'], dtype=torch.long).squeeze()
num_nodes = label.shape[0]
dataset.graph = {'edge_index': edge_index,
'edge_feat': None,
'node_feat': node_feat,
'num_nodes': num_nodes}
dataset.label = label
return dataset
def load_twitch_gamer_dataset(task="mature", normalize=True):
if not path.exists(f'{DATAPATH}twitch-gamer_feat.csv'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['twitch-gamer_feat'],
dest_path=f'{DATAPATH}twitch-gamer_feat.csv', showsize=True)
if not path.exists(f'{DATAPATH}twitch-gamer_edges.csv'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['twitch-gamer_edges'],
dest_path=f'{DATAPATH}twitch-gamer_edges.csv', showsize=True)
edges = pd.read_csv(f'{DATAPATH}twitch-gamer_edges.csv')
nodes = pd.read_csv(f'{DATAPATH}twitch-gamer_feat.csv')
edge_index = torch.tensor(edges.to_numpy()).t().type(torch.LongTensor)
num_nodes = len(nodes)
label, features = load_twitch_gamer(nodes, task)
node_feat = torch.tensor(features, dtype=torch.float)
if normalize:
node_feat = node_feat - node_feat.mean(dim=0, keepdim=True)
node_feat = node_feat / node_feat.std(dim=0, keepdim=True)
dataset = NCDataset("twitch-gamer")
dataset.graph = {'edge_index': edge_index,
'node_feat': node_feat,
'edge_feat': None,
'num_nodes': num_nodes}
dataset.label = torch.tensor(label)
return dataset
def load_wiki():
if not path.exists(f'{DATAPATH}wiki_features2M.pt'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['wiki_features'], \
dest_path=f'{DATAPATH}wiki_features2M.pt', showsize=True)
if not path.exists(f'{DATAPATH}wiki_edges2M.pt'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['wiki_edges'], \
dest_path=f'{DATAPATH}wiki_edges2M.pt', showsize=True)
if not path.exists(f'{DATAPATH}wiki_views2M.pt'):
gdd.download_file_from_google_drive(
file_id=dataset_drive_url['wiki_views'], \
dest_path=f'{DATAPATH}wiki_views2M.pt', showsize=True)
dataset = NCDataset("wiki")
features = torch.load(f'{DATAPATH}wiki_features2M.pt')
edges = torch.load(f'{DATAPATH}wiki_edges2M.pt').T
row, col = edges
print(f"edges shape: {edges.shape}")
label = torch.load(f'{DATAPATH}wiki_views2M.pt')
num_nodes = label.shape[0]
print(f"features shape: {features.shape[0]}")
print(f"Label shape: {label.shape[0]}")
dataset.graph = {"edge_index": edges,
"edge_feat": None,
"node_feat": features,
"num_nodes": num_nodes}
dataset.label = label
return dataset