-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfindItinerary.java
35 lines (27 loc) · 1.48 KB
/
findItinerary.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/*
Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.
Note:
If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
All airports are represented by three capital letters (IATA code).
You may assume all tickets form at least one valid itinerary.
Example 1:
Input: tickets = [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Output: ["JFK", "MUC", "LHR", "SFO", "SJC"]
Example 2:
Input: tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Output: ["JFK","ATL","JFK","SFO","ATL","SFO"]
Explanation: Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"]. But it is larger in lexical order.
*/
Map<String, PriorityQueue<String>> targets = new HashMap<>();
List<String> route = new LinkedList();
public List<String> findItinerary(String[][] tickets) {
for (String[] ticket : tickets)
targets.computeIfAbsent(ticket[0], k -> new PriorityQueue()).add(ticket[1]);
visit("JFK");
return route;
}
void visit(String airport) {
while(targets.containsKey(airport) && !targets.get(airport).isEmpty())
visit(targets.get(airport).poll());
route.add(0, airport);
}