-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKeyphraseBackendRake.py
278 lines (241 loc) · 12.6 KB
/
KeyphraseBackendRake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from flask import Flask, request, jsonify
from flask.ext.restful import Resource, Api, reqparse
import argparse
from time import gmtime, strftime
import operator
import os
import re
app = Flask(__name__)
api = Api(app)
@app.route('/')
def welcome_message():
return 'Welcome to the keyphrase extraction backend providing RAKE.'
# http://localhost:4124/keyphrase/ping
# http://localhost:4124/keyphrase/extract?plaintext=...
class Ping(Resource):
def get(self):
return strftime("%Y-%m-%d %H:%M:%S", gmtime())
# cmp. https://github.com/aneesha/RAKE - put in class and ported to Python 3
class RAKEPy3(Resource):
debug = False
test = True
def is_number(self,s):
try:
float(s) if '.' in s else int(s)
return True
except ValueError:
return False
def load_stop_words(self,stop_word_file):
"""
Utility function to load stop words from a file and return as a list of words
@param stop_word_file Path and file name of a file containing stop words.
@return list A list of stop words.
"""
stop_words = []
for line in open(stop_word_file):
if line.strip()[0:1] != "#":
for word in line.split(): # in case more than one per line
stop_words.append(word)
return stop_words
def separate_words(self,text, min_word_return_size):
"""
Utility function to return a list of all words that are have a length greater than a specified number of characters.
@param text The text that must be split in to words.
@param min_word_return_size The minimum no of characters a word must have to be included.
"""
splitter = re.compile('[^a-zA-Z0-9_\\+\\-/]')
words = []
for single_word in splitter.split(text):
current_word = single_word.strip().lower()
#leave numbers in phrase, but don't count as words, since they tend to invalidate scores of their phrases
if len(current_word) > min_word_return_size and current_word != '' and not self.is_number(current_word):
words.append(current_word)
return words
def split_sentences(self,text):
"""
Utility function to return a list of sentences.
@param text The text that must be split in to sentences.
"""
sentence_delimiters = re.compile(u'[.!?,;:\t\\\\"\\(\\)\\\'\u2019\u2013]|\\s\\-\\s')
sentences = sentence_delimiters.split(text)
return sentences
def build_stop_word_regex(self,stop_word_file_path):
stop_word_list = self.load_stop_words(stop_word_file_path)
stop_word_regex_list = []
for word in stop_word_list:
word_regex = r'\b' + word + r'(?![\w-])' # added look ahead for hyphen
stop_word_regex_list.append(word_regex)
stop_word_pattern = re.compile('|'.join(stop_word_regex_list), re.IGNORECASE)
return stop_word_pattern
def generate_candidate_keywords(self,sentence_list, stopword_pattern):
phrase_list = []
for s in sentence_list:
tmp = re.sub(stopword_pattern, '|', s.strip())
phrases = tmp.split("|")
for phrase in phrases:
phrase = phrase.strip().lower()
if phrase != "":
phrase_list.append(phrase)
return phrase_list
def calculate_word_scores(self,phraseList):
word_frequency = {}
word_degree = {}
for phrase in phraseList:
word_list = self.separate_words(phrase, 0)
word_list_length = len(word_list)
word_list_degree = word_list_length - 1
#if word_list_degree > 3: word_list_degree = 3 #exp.
for word in word_list:
word_frequency.setdefault(word, 0)
word_frequency[word] += 1
word_degree.setdefault(word, 0)
word_degree[word] += word_list_degree #orig.
#word_degree[word] += 1/(word_list_length*1.0) #exp.
for item in word_frequency:
word_degree[item] = word_degree[item] + word_frequency[item]
# Calculate Word scores = deg(w)/frew(w)
word_score = {}
for item in word_frequency:
word_score.setdefault(item, 0)
word_score[item] = word_degree[item] / (word_frequency[item] * 1.0) #orig.
#word_score[item] = word_frequency[item]/(word_degree[item] * 1.0) #exp.
return word_score
def generate_candidate_keyword_scores(self,phrase_list, word_score):
keyword_candidates = {}
for phrase in phrase_list:
keyword_candidates.setdefault(phrase, 0)
word_list = self.separate_words(phrase, 0)
candidate_score = 0
for word in word_list:
candidate_score += word_score[word]
keyword_candidates[phrase] = candidate_score
return keyword_candidates
def __init__(self):
self.stop_words_path = 'SmartStoplist.txt' # stop_words_path
self.__stop_words_pattern = self.build_stop_word_regex(self.stop_words_path)
def run(self, text):
sentence_list = self.split_sentences(text)
phrase_list = self.generate_candidate_keywords(sentence_list, self.__stop_words_pattern)
word_scores = self.calculate_word_scores(phrase_list)
keyword_candidates = self.generate_candidate_keyword_scores(phrase_list, word_scores)
#sorted_keywords = sorted(keyword_candidates.iteritems(), key=operator.itemgetter(1), reverse=True)
sorted_keywords = sorted(iter(keyword_candidates.items()), key=operator.itemgetter(1), reverse=True)
return sorted_keywords
def get(self):
parser = reqparse.RequestParser()
parser.add_argument('plaintext', type=str, required=True, help="Text for extraction", action='append')
text = re.sub('\s+', ' ', parser.parse_args()['plaintext'][0].replace('\n', '').strip())
sentence_list = self.split_sentences(text)
# stoppath = "FoxStoplist.txt" #Fox stoplist contains "numbers", so it will not find "natural numbers" like in Table 1.1
stop_path = 'SmartStoplist.txt' # SMART stoplist misses some of the lower-scoring keywords in Figure 1.5, which means that the top 1/3 cuts off one of the 4.0 score words in Table 1.1
stop_word_pattern = self.build_stop_word_regex(stop_path)
# Generate candidate keywords
phrase_list = self.generate_candidate_keywords(sentence_list, stop_word_pattern)
# Calculate individual word scores
word_scores = self.calculate_word_scores(phrase_list)
# Generate candidate keyword scores
keyword_candidates = self.generate_candidate_keyword_scores(phrase_list, word_scores)
if self.debug: print(keyword_candidates)
sorted_keywords = sorted(iter(keyword_candidates.items()), key=operator.itemgetter(1), reverse=True)
if self.debug: print(sorted_keywords)
total_keywords = len(sorted_keywords)
# Only take top 1/3.5 of list via range
filtered_keywords = sorted_keywords[0:((int)(total_keywords / 3.5))]
# if debug: print totalKeywords
# print (sorted_keywords[0:((int)(total_keywords / 4))])
# Remove keyphrases longer than 4 words (usually meaningless set of words)
result_list = [k for k in filtered_keywords if len(k[0].split(' ')) <= 4] # -> List comprehension (look it up)
json_answer = '['
for keyphrase in result_list:
# Split keyphrase into words and only merge those back together that contain no (special characters or 0-9)
temp = ' '.join([k for k in keyphrase[0].split(' ') if len(re.findall("[^A-Za-z-]+", k)) == 0])
if temp != '': # In case we removed every word, don't write cleaned keyphrase to file, otherwise do
# keyphrase = tuple([temp,keyphrase[1]])
json_answer = json_answer + '"' + str(keyphrase[0]) + '":' + str(keyphrase[1]) + ','
if json_answer == '[':
return '[]'
else:
return re.sub(',$', ']', json_answer)
# if __name__ == '__main__':
# print('Detecting key phrases...')
#
# rake = RAKEPy3('SmartStoplist.txt')
#
# # Traverse corpus directors
# for root, dirs, files in os.walk("./txten"):
# for file in files:
# #Open all keyfiles
# if file.endswith('.txt'):
# print(' Analyzing ' + os.path.join(root, file))
#
# # Read in contents of text file into one line
# with open(os.path.join(root, file), encoding='utf-8') as a_file:
# # First replace all line breaks with spaces and strip space in front or back, then replace multiple whitespace chars by one space
#
# # NOTE: There are two variants: Replace \n with space or with nothing - the first might split words, the seconds might melt words together
# # Hence, apply both and then take common keyphrases
# text = re.sub('\s+',' ',a_file.read().replace('\n','').strip())
# #text = re.sub('\s+',' ',a_file.read().replace('\n',' ').strip())
#
# # Afterwards, apply phrase extraction
#
# # print('Approach 1:')
# # keywords = rake.run(text)
# # print(keywords)
# # print('\nApproach 2:')
#
# sentence_list = rake.split_sentences(text)
# #stoppath = "FoxStoplist.txt" #Fox stoplist contains "numbers", so it will not find "natural numbers" like in Table 1.1
# stop_path = 'SmartStoplist.txt' #SMART stoplist misses some of the lower-scoring keywords in Figure 1.5, which means that the top 1/3 cuts off one of the 4.0 score words in Table 1.1
# stop_word_pattern = rake.build_stop_word_regex(stop_path)
#
# # Generate candidate keywords
# phrase_list = rake.generate_candidate_keywords(sentence_list, stop_word_pattern)
#
# # Calculate individual word scores
# word_scores = rake.calculate_word_scores(phrase_list)
#
# # Generate candidate keyword scores
# keyword_candidates = rake.generate_candidate_keyword_scores(phrase_list, word_scores)
# if rake.debug: print(keyword_candidates)
#
# sorted_keywords = sorted(iter(keyword_candidates.items()), key=operator.itemgetter(1), reverse=True)
# if rake.debug: print(sorted_keywords)
#
# total_keywords = len(sorted_keywords)
# # Only take top 1/3.5 of list via range
# filtered_keywords = sorted_keywords[0:((int)(total_keywords / 3.5))]
# #if debug: print totalKeywords
# #print (sorted_keywords[0:((int)(total_keywords / 4))])
#
# # Remove keyphrases longer than 4 words (usually meaningless set of words)
# result_list = [k for k in filtered_keywords if len(k[0].split(' ')) <= 4] # -> List comprehension (look it up)
# with open(os.path.join(root, file)+'_keyphrases.txt', mode='a', encoding='utf-8') as a_file:
# for keyphrase in result_list:
# # Split keyphrase into words and only merge those back together that contain no special characters or 0-9
# temp = ' '.join([k for k in keyphrase[0].split(' ') if len(re.findall("[^A-Za-z-]+", k)) == 0])
# if temp != '': # In case we removed every word, don't write cleaned keyphrase to file, otherwise do
# #keyphrase = tuple([temp,keyphrase[1]])
# a_file.write(temp + ',' + (str)(keyphrase[1]) + '\n')
# #print(temp) # Debug print statement
#
# # We could produce duplicates by removing words with special characters
# # (example: "concise oxford dictionary,8.5")
# # WONTFIX for us, because duplicates are removed at a later stage when keyphrases are merged
#
# # for keyphrase in filtered_keywords:
# # if len(re.findall("[^A-Za-z0-9]+", keyphrase[0].split(' '))) > 0:
# # print('yeah')
#
# # print(result_list)
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--port', help='Port, default is 4124')
args = p.parse_args()
# Setup server
host = '0.0.0.0'
port = int(args.port) if args.port else 4124
path = '/keyphrase'
api.add_resource(Ping, path + '/ping')
api.add_resource(RAKEPy3, path + '/extract')
app.run(host=host, port=port)