-
Notifications
You must be signed in to change notification settings - Fork 200
/
analyze.py
228 lines (165 loc) · 7.36 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = ''
try:
import tflite_runtime.interpreter as tflite
except:
from tensorflow import lite as tflite
import argparse
import operator
import librosa
import numpy as np
import math
import time
def loadModel():
global INPUT_LAYER_INDEX
global OUTPUT_LAYER_INDEX
global MDATA_INPUT_INDEX
global CLASSES
print('LOADING TF LITE MODEL...', end=' ')
# Load TFLite model and allocate tensors.
interpreter = tflite.Interpreter(model_path='model/BirdNET_6K_GLOBAL_MODEL.tflite')
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Get input tensor index
INPUT_LAYER_INDEX = input_details[0]['index']
MDATA_INPUT_INDEX = input_details[1]['index']
OUTPUT_LAYER_INDEX = output_details[0]['index']
# Load labels
CLASSES = []
with open('model/labels.txt', 'r') as lfile:
for line in lfile.readlines():
CLASSES.append(line.replace('\n', ''))
print('DONE!')
return interpreter
def loadCustomSpeciesList(path):
slist = []
if os.path.isfile(path):
with open(path, 'r') as csfile:
for line in csfile.readlines():
slist.append(line.replace('\r', '').replace('\n', ''))
return slist
def splitSignal(sig, rate, overlap, seconds=3.0, minlen=1.5):
# Split signal with overlap
sig_splits = []
for i in range(0, len(sig), int((seconds - overlap) * rate)):
split = sig[i:i + int(seconds * rate)]
# End of signal?
if len(split) < int(minlen * rate):
break
# Signal chunk too short? Fill with zeros.
if len(split) < int(rate * seconds):
temp = np.zeros((int(rate * seconds)))
temp[:len(split)] = split
split = temp
sig_splits.append(split)
return sig_splits
def readAudioData(path, overlap, sample_rate=48000):
print('READING AUDIO DATA...', end=' ', flush=True)
# Open file with librosa (uses ffmpeg or libav)
sig, rate = librosa.load(path, sr=sample_rate, mono=True, res_type='kaiser_fast')
# Split audio into 3-second chunks
chunks = splitSignal(sig, rate, overlap)
print('DONE! READ', str(len(chunks)), 'CHUNKS.')
return chunks
def convertMetadata(m):
# Convert week to cosine
if m[2] >= 1 and m[2] <= 48:
m[2] = math.cos(math.radians(m[2] * 7.5)) + 1
else:
m[2] = -1
# Add binary mask
mask = np.ones((3,))
if m[0] == -1 or m[1] == -1:
mask = np.zeros((3,))
if m[2] == -1:
mask[2] = 0.0
return np.concatenate([m, mask])
def custom_sigmoid(x, sensitivity=1.0):
return 1 / (1.0 + np.exp(-sensitivity * x))
def predict(sample, interpreter, sensitivity):
# Make a prediction
interpreter.set_tensor(INPUT_LAYER_INDEX, np.array(sample[0], dtype='float32'))
interpreter.set_tensor(MDATA_INPUT_INDEX, np.array(sample[1], dtype='float32'))
interpreter.invoke()
prediction = interpreter.get_tensor(OUTPUT_LAYER_INDEX)[0]
# Apply custom sigmoid
p_sigmoid = custom_sigmoid(prediction, sensitivity)
# Get label and scores for pooled predictions
p_labels = dict(zip(CLASSES, p_sigmoid))
# Sort by score
p_sorted = sorted(p_labels.items(), key=operator.itemgetter(1), reverse=True)
# Remove species that are on blacklist
for i in range(min(10, len(p_sorted))):
if p_sorted[i][0] in ['Human_Human', 'Non-bird_Non-bird', 'Noise_Noise']:
p_sorted[i] = (p_sorted[i][0], 0.0)
# Only return first the top ten results
return p_sorted[:10]
def analyzeAudioData(chunks, lat, lon, week, sensitivity, overlap, interpreter):
detections = {}
start = time.time()
print('ANALYZING AUDIO...', end=' ', flush=True)
# Convert and prepare metadata
mdata = convertMetadata(np.array([lat, lon, week]))
mdata = np.expand_dims(mdata, 0)
# Parse every chunk
pred_start = 0.0
for c in chunks:
# Prepare as input signal
sig = np.expand_dims(c, 0)
# Make prediction
p = predict([sig, mdata], interpreter, sensitivity)
# Save result and timestamp
pred_end = pred_start + 3.0
detections[str(pred_start) + ';' + str(pred_end)] = p
pred_start = pred_end - overlap
print('DONE! Time', int((time.time() - start) * 10) / 10.0, 'SECONDS')
return detections
def writeResultsToFile(detections, min_conf, path):
print('WRITING RESULTS TO', path, '...', end=' ')
rcnt = 0
with open(path, 'w') as rfile:
rfile.write('Start (s);End (s);Scientific name;Common name;Confidence\n')
for d in detections:
for entry in detections[d]:
if entry[1] >= min_conf and (entry[0] in WHITE_LIST or len(WHITE_LIST) == 0):
rfile.write(d + ';' + entry[0].replace('_', ';') + ';' + str(entry[1]) + '\n')
rcnt += 1
print('DONE! WROTE', rcnt, 'RESULTS.')
def main():
global WHITE_LIST
# Parse passed arguments
parser = argparse.ArgumentParser()
parser.add_argument('--i', help='Path to input file.')
parser.add_argument('--o', default='result.csv', help='Path to output file. Defaults to result.csv.')
parser.add_argument('--lat', type=float, default=-1, help='Recording location latitude. Set -1 to ignore.')
parser.add_argument('--lon', type=float, default=-1, help='Recording location longitude. Set -1 to ignore.')
parser.add_argument('--week', type=int, default=-1, help='Week of the year when the recording was made. Values in [1, 48] (4 weeks per month). Set -1 to ignore.')
parser.add_argument('--overlap', type=float, default=0.0, help='Overlap in seconds between extracted spectrograms. Values in [0.0, 2.9]. Defaults tp 0.0.')
parser.add_argument('--sensitivity', type=float, default=1.0, help='Detection sensitivity; Higher values result in higher sensitivity. Values in [0.5, 1.5]. Defaults to 1.0.')
parser.add_argument('--min_conf', type=float, default=0.1, help='Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.')
parser.add_argument('--custom_list', default='', help='Path to text file containing a list of species. Not used if not provided.')
args = parser.parse_args()
# Load model
interpreter = loadModel()
# Load custom species list
if not args.custom_list == '':
WHITE_LIST = loadCustomSpeciesList(args.custom_list)
else:
WHITE_LIST = []
# Read audio data
audioData = readAudioData(args.i, args.overlap)
# Process audio data and get detections
week = max(1, min(args.week, 48))
sensitivity = max(0.5, min(1.0 - (args.sensitivity - 1.0), 1.5))
detections = analyzeAudioData(audioData, args.lat, args.lon, week, sensitivity, args.overlap, interpreter)
# Write detections to output file
min_conf = max(0.01, min(args.min_conf, 0.99))
writeResultsToFile(detections, min_conf, args.o)
if __name__ == '__main__':
main()
# Example calls
# python3 analyze.py --i 'example/XC558716 - Soundscape.mp3' --lat 35.4244 --lon -120.7463 --week 18
# python3 analyze.py --i 'example/XC563936 - Soundscape.mp3' --lat 47.6766 --lon -122.294 --week 11 --overlap 1.5 --min_conf 0.25 --sensitivity 1.25 --custom_list 'example/custom_species_list.txt'