-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
276 lines (239 loc) · 9.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import sys
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os
user_flags = []
def DEFINE_string(name, default_value, doc_string):
tf.app.flags.DEFINE_string(name, default_value, doc_string)
global user_flags
user_flags.append(name)
def DEFINE_integer(name, default_value, doc_string):
tf.app.flags.DEFINE_integer(name, default_value, doc_string)
global user_flags
user_flags.append(name)
def DEFINE_float(name, defualt_value, doc_string):
tf.app.flags.DEFINE_float(name, defualt_value, doc_string)
global user_flags
user_flags.append(name)
def DEFINE_boolean(name, default_value, doc_string):
tf.app.flags.DEFINE_boolean(name, default_value, doc_string)
global user_flags
user_flags.append(name)
def print_user_flags(line_limit = 80):
print("-" * 80)
global user_flags
FLAGS = tf.app.flags.FLAGS
for flag_name in sorted(user_flags):
value = "{}".format(getattr(FLAGS, flag_name))
log_string = flag_name
log_string += "." * (line_limit - len(flag_name) - len(value))
log_string += value
print(log_string)
def plot_data_label(images, labels, channels, width, height, figsize):
# width = the number of images placed horizontally
# height = the number of image placed vertically
# figsize = white space between images
order = 1
load_size = images.shape[1]
fig, axes = plt.subplots(width, height, figsize=(figsize, figsize))
fig.subplots_adjust(hspace=1, wspace=1)
path = os.getcwd() + "/plt_images"
if not os.path.exists(path):
os.makedirs(path)
for i, ax in enumerate(axes.flat):
if channels == 1:
ax.imshow(images[i].reshape(load_size, load_size))
else:
ax.imshow(images[i].reshape(load_size, load_size, channels))
ax.set_xlabel("label: %d" % (labels[i]))
ax.set_xticks([])
ax.set_yticks([])
file_name = path + "/image" + str(order) + ".png"
while os.path.isfile(file_name) is True:
order += 1
file_name = path + "/image" + str(order) + ".png"
plt.savefig(file_name)
plt.close()
class Logger(object):
def __init__(self, output_file):
self.terminal = sys.stdout
self.log = open(output_file, "a")
def flush(self):
pass
def write(self, message):
self.terminal.write(message)
self.terminal.flush()
self.log.write(message)
self.log.flush()
def make_one_hot(list):
n_values = np.max(list) + 1
one_hot = np.eye(n_values)[list]
return one_hot
def count_model_params(tf_variables):
"""
Args:
tf_variables: list of all model variables
"""
num_vars = 0
for var in tf_variables:
num_vars += np.prod([dim.value for dim in var.get_shape()])
return num_vars
def get_train_ops(
loss,
tf_variables,
train_step,
clip_mode=None,
grad_bound=None,
l2_reg=1e-4,
lr_warmup_val=None,
lr_warmup_steps=100,
lr_init=0.1,
lr_dec_start=0,
lr_dec_every=10000,
lr_dec_rate=0.1,
lr_dec_min=None,
lr_cosine=False,
lr_max=None,
lr_min=None,
lr_T_0=None,
lr_T_mul=None,
num_train_batches=None,
optim_algo=None,
sync_replicas=False,
num_aggregate=None,
num_replicas=None,
get_grad_norms=False,
moving_average=None,
is_controller=False):
"""
Args:
clip_mode: "global", "norm", or None.
moving_average: store the moving average of parameters
"""
#TODO Maybe dont reduce here???
# if not is_controller: # Dont quantize controller, vanishing grad problem?
# for i, var in enumerate(tf_variables):
# if var.dtype != tf.float16:
# tf_variables[i] = tf.Variable(tf.cast(tf_variables[i], tf.float16), name=tf_variables[i].name.split(':')[0])
# if loss.dtype != tf.float16:
# loss = tf.cast(loss, tf.float16, name=loss.name.split(':')[0])
if l2_reg > 0:
l2_losses = []
if not is_controller:
for var in tf_variables:
l2_losses.append(tf.reduce_sum(tf.cast(var, tf.float32) ** 2))
else:
for var in tf_variables:
l2_losses.append(tf.reduce_sum(var ** 2))
#TODO
l2_loss = tf.add_n(l2_losses) #OG
loss += l2_reg * l2_loss # loss = loss + 1e-4*l2_loss
# import code
# code.interact(local=locals())
if lr_cosine:
assert lr_max is not None, "Need lr_max to use lr_cosine"
assert lr_min is not None, "Need lr_min to use lr_cosine"
assert lr_T_0 is not None, "Need lr_T_0 to use lr_cosine"
assert lr_T_mul is not None, "Need lr_T_mul to use lr_cosine"
assert num_train_batches is not None, ("Need num_train_batches to use"
" lr_cosine")
curr_epoch = train_step // num_train_batches # train step will be calculated by just one batch!
last_reset = tf.Variable(0, dtype=tf.int32, trainable=False,
name="last_reset")
T_i = tf.Variable(lr_T_0, dtype=tf.int32, trainable=False, name="T_i")
T_curr = curr_epoch - last_reset
def _update():
update_last_reset = tf.assign(last_reset, curr_epoch, use_locking=True)
update_T_i = tf.assign(T_i, T_i * lr_T_mul, use_locking=True)
with tf.control_dependencies([update_last_reset, update_T_i]):
rate = tf.to_float(T_curr) / tf.to_float(T_i) * 3.1415926
lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + tf.cos(rate))
return lr
def _no_update():
rate = tf.to_float(T_curr) / tf.to_float(T_i) * 3.1415926
lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + tf.cos(rate))
return lr
learning_rate = tf.cond(
tf.greater_equal(T_curr, T_i), _update, _no_update)
else:
learning_rate = tf.train.exponential_decay(
lr_init, tf.maximum(train_step - lr_dec_start, 0), lr_dec_every,
lr_dec_rate, staircase=True)
if lr_dec_min is not None:
learning_rate = tf.maximum(learning_rate, lr_dec_min)
if lr_warmup_val is not None:
learning_rate = tf.cond(tf.less(train_step, lr_warmup_steps),
lambda: lr_warmup_val, lambda: learning_rate)
if optim_algo == "momentum":
opt = tf.train.MomentumOptimizer(
learning_rate, 0.9, use_locking=True, use_nesterov=True)
elif optim_algo == "sgd":
opt = tf.train.GradientDescentOptimizer(learning_rate, use_locking=True)
elif optim_algo == "adam":
opt = tf.train.AdamOptimizer(learning_rate, beta1=0.0, epsilon=1e-3,
use_locking=True)
else:
raise ValueError("Unknown optim_algo {}".format(optim_algo))
if sync_replicas:
assert num_aggregate is not None, "Need num_aggregate to sync."
assert num_replicas is not None, "Need num_replicas to sync."
opt = tf.train.SyncReplicasOptimizer(
opt,
replicas_to_aggregate=num_aggregate,
total_num_replicas=num_replicas,
use_locking=True)
if moving_average is not None:
opt = tf.contrib.opt.MovingAverageOptimizer(
opt, average_decay=moving_average)
#TODO
if not is_controller:
loss_scale_manager = tf.contrib.mixed_precision.FixedLossScaleManager(5000) # too big? try 10000
loss_scale_optimizer = tf.contrib.mixed_precision.LossScaleOptimizer(opt, loss_scale_manager)
grads_and_vars = loss_scale_optimizer.compute_gradients(loss, tf_variables)
grads = [grad_and_var[0] for grad_and_var in grads_and_vars]
else:
grads = tf.gradients(loss, tf_variables)
# import code
# code.interact(local=locals())
grad_norm = tf.global_norm(grads)
grad_norms = {}
for v, g in zip(tf_variables, grads):
if v is None or g is None:
continue
if isinstance(g, tf.IndexedSlices):
grad_norms[v.name] = tf.sqrt(tf.reduce_sum(g.values ** 2))
else:
grad_norms[v.name] = tf.sqrt(tf.reduce_sum(g ** 2))
if clip_mode is not None:
assert grad_bound is not None, "Need grad_bound to clip gradients."
if clip_mode == "global":
grads, _ = tf.clip_by_global_norm(grads, grad_bound)
elif clip_mode == "norm":
clipped = []
for g in grads:
if isinstance(g, tf.IndexedSlices):
c_g = tf.clip_by_norm(g.values, grad_bound)
c_g = tf.IndexedSlices(g.indices, c_g)
else:
c_g = tf.clip_by_norm(g, grad_bound)
clipped.append(g)
grads = clipped
else:
raise NotImplementedError("Unknown clip_mode {}".format(clip_mode))
try:
#TODO
if not is_controller:
assert(len(grads) == len(tf_variables))
grads_and_vars = [tuple([grads[i],tf_variables[i]]) for i,_ in enumerate(grads)]
train_op = loss_scale_optimizer.apply_gradients(grads_and_vars, global_step=train_step)
else:
train_op = opt.apply_gradients(zip(grads, tf_variables), global_step=train_step)
except Exception as e:
print("\ncould not apply_gradients(), exception: {}".format(e))
import code
code.interact(local=locals())
if get_grad_norms:
return train_op, learning_rate, grad_norm, opt, grad_norms
else:
return train_op, learning_rate, grad_norm, opt