-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathx_learner_main.py
687 lines (583 loc) · 28.9 KB
/
x_learner_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
# coding=utf-8
from typing import List, Tuple
import torch
from torch import nn, optim
import pandas as pd
import hydra
from pathlib import Path
from model.models import BaseModel4MetaLearner
from model.dataset import ESXDataset
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import sklearn.metrics as metrics
import logging
import sys, os, shutil
import time
import random
def seed_torch(seed=1):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
# import metrics to evaluate models
from sklift.metrics import (
uplift_at_k, uplift_auc_score, qini_auc_score, weighted_average_uplift
)
LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"
logging.basicConfig(level=logging.DEBUG, format=LOG_FORMAT)
WORK_DIR = Path().resolve()
torch.autograd.set_detect_anomaly(True)
def hook_for_bkwd(module, input_grad, output_grad):
# print("input grad {}".format(input_grad))
# print("output grad {}".format(output_grad))
for i in input_grad:
if ~torch.isfinite(i).all():
print("input grad {}".format(input_grad))
for j in output_grad:
if ~torch.isfinite(j).all():
print("output grad {}".format(output_grad))
def validation_split(yt, val_fraction):
""" Construct a train/validation split """
n = len(yt)
if val_fraction > 0:
n_valid = int(val_fraction * n)
n_train = n - n_valid
I = np.random.permutation(range(0, n))
I_train = I[:n_train]
I_valid = I[n_train:]
else:
I_train = range(n)
I_valid = []
return I_train, I_valid
''' genarate symt data, just for test '''
def gen_data(n, dim):
n_data = torch.ones(n, dim)
x0 = torch.normal(1 * n_data, 1) # + 0.1*torch.normal(0.01*n_data,1)
y0 = torch.zeros(n)
x1 = torch.normal(1.5 * n_data, 1) # + 0.1*torch.normal(0.01*n_data,1)
y1 = torch.ones(n)
data = { 'x': np.expand_dims(torch.cat((x0, x1), 0).cpu().detach().numpy(), axis=2)
, 'yf': np.expand_dims(torch.cat((y0, y1), 0).cpu().detach().numpy(), axis=1)
}
data['e'] = np.ones_like(data["yf"])
data['t'] = np.ones_like(data["yf"])
data['I'] = np.ones_like(data["yf"])
data['ycf'] = 1 - data["yf"]
_, I_invers = validation_split(data["yf"], 0.2)
data['e'][I_invers] = 0
_, I_invers = validation_split(data["yf"], 0.1)
data['t'][I_invers] = 0
_, I_invers = validation_split(data["yf"], 0.1)
data['I'][I_invers] = 0
# data['ycf'][I_invers] = 0
# shfful
I = np.random.permutation(range(0, 2 * n))
data['x'] = data['x'][I]
data['yf'] = data['yf'][I]
data['HAVE_TRUTH'] = not data['ycf'] is None
data['dim'] = data['x'].shape[1]
data['n'] = data['x'].shape[0]
return data
def load_data(fname):
""" Load data set """
data_in = np.load(fname)
data = { 'x': data_in['x'], 't': data_in['t'], 'yf': data_in['yf'] }
try:
data['ycf'] = data_in['ycf']
data["mu0"] = data_in['mu0']
data["mu1"] = data_in['mu1']
except:
data['ycf'] = None
try:
data['e'] = data_in['e']
if (len(data['e']) < 1):
data['e'] = np.zeros_like(data_in['yf'])
except:
data['e'] = np.zeros_like(data_in['yf'])
try:
data['tau'] = data_in['tau']
data['IS_SYNT'] = True
except:
data['tau'] = np.array([None])
data['IS_SYNT'] = False
try:
data['I'] = data_in['I']
except:
data['I'] = np.ones_like(data_in['yf'])
data['HAVE_TRUTH'] = not data['ycf'] is None
data['dim'] = data['x'].shape[1]
data['n'] = data['x'].shape[0]
return data
def validation_split(x, val_fraction):
""" Construct a train/validation split """
n = x.shape[0]
if val_fraction > 0:
n_valid = int(val_fraction * n)
n_train = n - n_valid
I = np.random.permutation(range(0, n))
I_train = I[:n_train]
I_valid = I[n_train:]
else:
I_train = list(range(n))
I_valid = []
return I_train, I_valid
def evalWithData(group_name, models, writer, step_or_epoch, cfg, x, yf, t, e, eff_tau=None, i_exp=None):
logging.info("group_name:{}, evalWithData... -----------------------------------".format(group_name))
writer_flag = not writer is None
# set loss functions
loss_fn = nn.BCELoss() # for probability
loss_mse = nn.MSELoss()
loss_with_logit_fn = nn.BCEWithLogitsLoss() # for logit
if cfg.use_ps:
pscore = torch.sigmoid(models["propensity"](x))
else:
pscore = 0.5
dhat_cs = models["tau_c"](x)
dhat_ts = models["tau_t"](x)
p_tau = pscore * dhat_cs + (1 - pscore) * dhat_ts
# just for print log
iter_name = "epoch"
if i_exp == 0:
iter_name = "train_step"
# the p_tau of treatment group
logging.info(
"p_tau {}, {}, {} , mean(p_tau[t]) :{}".format(group_name, iter_name, step_or_epoch,
torch.mean(p_tau[t.bool()]).item()))
# the p_tau of control group
logging.info(
"p_tau {}, {}, {} , mean(p_tau[~t]) :{}".format(group_name, iter_name, step_or_epoch,
torch.mean(p_tau[~t.bool()]).item()))
# order by a list
loss_list=[]
for name in models.keys():
pred_logit = models[name](x)
if name == "propensity":
if not cfg.use_ps:
continue
loss = loss_with_logit_fn(pred_logit, t)
elif name == "mu_c":
loss = loss_with_logit_fn(pred_logit[~t.bool()], yf[~t.bool()])
elif name == "mu_t":
loss = loss_with_logit_fn(pred_logit[t.bool()], yf[t.bool()])
elif name == "tau_c":
target = torch.sigmoid(models["mu_t"](x)[~t.bool()]) - yf[~t.bool()]
loss = loss_mse(pred_logit[~t.bool()], target)
elif name == "tau_t":
target = yf[t.bool()] - torch.sigmoid(models["mu_c"](x))[t.bool()]
loss = loss_mse(pred_logit[t.bool()], target)
else:
loss = 0
loss_list.append(loss)
if writer_flag:
writer.add_scalar("{}/{}_loss".format(group_name, name), loss, step_or_epoch)
auuc_score = qini_auc_score(yf.reshape(-1).cpu().numpy(), p_tau.reshape(-1).cpu().numpy(),
t.reshape(-1).cpu().numpy())
logging.info("group_name {}, {}, {}, auuc_score: {}".format(group_name, iter_name, step_or_epoch, auuc_score))
if writer_flag:
writer.add_scalar("{}/auuc_score".format(group_name), auuc_score, step_or_epoch)
# mu_t
pred_score = torch.sigmoid( models["mu_t"](x) )
fpr, tpr, threshold = metrics.roc_curve(yf[t.bool()].cpu().detach().numpy(),
pred_score[t.bool()].cpu().detach().numpy())
roc_auc = metrics.auc(fpr, tpr)
writer.add_scalar("{}/:AUC, p_mut".format(group_name), roc_auc, step_or_epoch)
# mu_c
pred_score = torch.sigmoid(models["mu_c"](x) )
fpr, tpr, threshold = metrics.roc_curve(yf[~t.bool()].cpu().detach().numpy(),
pred_score[~t.bool()].cpu().detach().numpy())
roc_auc = metrics.auc(fpr, tpr)
writer.add_scalar("{}/:AUC, p_muc".format(group_name), roc_auc, step_or_epoch)
# propensity
pred_score = torch.sigmoid(models["propensity"](x))
fpr, tpr, threshold = metrics.roc_curve(t.cpu().detach().numpy(),
pred_score.cpu().detach().numpy())
roc_auc = metrics.auc(fpr, tpr)
writer.add_scalar("{}/:AUC, propensity".format(group_name), roc_auc, step_or_epoch)
writer.flush()
dict_result = {"loss": loss_list, "p_tau": p_tau}
return dict_result
def weighted_rmse_loss(input, target, weight=1):
risk = torch.sqrt(torch.mean(weight * torch.square(input - target)))
return risk
# return torch.mean(weight * ((input - target) ** 2) )
import math
def sample_imb_fn(x_, yf_, e_, t_, cfg):
# treatment group size
if "total_size" in cfg.keys():
total_size = cfg["total_size"]
else:
total_size = 360000
t_size = math.floor(total_size * (1/(cfg.sample_alpha + 1)))
# control group size
c_size = math.floor(total_size * (cfg.sample_alpha/(cfg.sample_alpha + 1)))
t_true_size = np.sum(t_ == 1)
c_true_size = np.sum(t_ == 0)
# treatment group
x = np.empty(shape=(0, x_.shape[1]), dtype=x_.dtype)
yf = np.empty(shape=( 0 ), dtype=yf_.dtype)
t = np.empty(shape=( 0 ), dtype=t_.dtype)
for i in range(int(t_size/t_true_size)+1):
i_loc = t_size - i*t_true_size
x = np.concatenate([x, x_[t_ == 1][:i_loc ]])
yf = np.concatenate([yf, yf_[t_ == 1][:i_loc]])
t = np.concatenate([t, t_[t_ == 1][:i_loc]])
for i in range(int(c_size/c_true_size)+1):
i_loc = c_size - i * c_true_size
x = np.concatenate([x, x_[t_ == 0][:i_loc]])
yf = np.concatenate([yf, yf_[t_ == 0][:i_loc]])
t = np.concatenate([t, t_[t_ == 0][:i_loc]])
e = np.zeros_like(t)
return x, yf, e, t
def train(data_dict, data_test_dict, device, cfg):
# configs
base_dim = cfg.base_dim
batch_size = cfg.batch_size
# 2*cfg.epochs for mu_t, mu_c and tau_t, tau_c
epochs = 2*cfg.epochs
LOGSTEP = cfg.log_step # training step
PREDSTEP = cfg.pred_step # epoch step
# for test
x_test_all_exp = data_test_dict["x"]
yf_test_all_exp = data_test_dict["yf"]
t_test_all_exp = data_test_dict["t"]
tau_test_all_exp = data_test_dict["tau"]
e_test_all_exp = data_test_dict["e"]
test_dim = data_test_dict['dim']
test_samples_num = data_test_dict['n']
HAVE_TRUTH = data_test_dict["HAVE_TRUTH"]
IS_SYNT = data_test_dict["IS_SYNT"]
# for train
x_all_exp = data_dict["x"]
yf_all_exp = data_dict["yf"]
tau_all_exp = data_dict["tau"]
if HAVE_TRUTH:
ycf_all_exp = data_dict["ycf"]
mu1f_all_exp = data_dict["mu1"]
mu0f_all_exp = data_dict["mu0"]
t_all_exp = data_dict["t"]
e_all_exp = data_dict["e"]
dim = data_dict['dim']
samples_num = data_dict['n']
''' Set up for saving variables '''
result_dict = { }
for group in ["train", "valid", "test"]:
result_dict[group] = { "p_prpsy": [], "p_yf": [], "p_ycf": [], "p_tau": [], "loss": [], "val": [] }
'''init summary'''
# summary_path = '/home/admin/fengtong/ESX_Model/runs/{}'.format(cfg.model_name)
summary_path = '{}/{}'.format(cfg.summary_base_dir, cfg.model_name)
# summary_path = '/home/admin/dufeng/ESX_Model/runs/{}'.format(cfg.model_name)
if os.path.exists(summary_path):
logging.info(" shutil.rmtree({}) ...".format(summary_path))
shutil.rmtree(summary_path)
time.sleep(0.5)
else:
''' create summary folder'''
logging.info(" os.mkdir({}) ...".format(summary_path))
os.mkdir(summary_path)
writer = SummaryWriter(summary_path)
# repeat experiment
for i_exp in range(0, cfg["n_experiments"]):
# just for debug
# if i_exp <1 :
# continue
''' Set up for saving variables for each repeat experiment'''
# train result
iexp_p_prpsy = { "train": [], "valid": [], "test": [] }
iexp_p_yf = { "train": [], "valid": [], "test": [] }
iexp_p_ycf = { "train": [], "valid": [], "test": [] }
iexp_p_tau = { "train": [], "valid": [], "test": [] }
# iexp_val = {"train": [] }
iexp_losses = { "train": [], "valid": [], "test": [] }
'''split to training set and validation set '''
I_train, I_valid = validation_split(yf_all_exp[:, i_exp], cfg.val_rate)
# pick exp i and I_train for training set that will use to built for dataloader
x = x_all_exp[I_train, :, i_exp]
yf = yf_all_exp[I_train, i_exp]
# if HAVE_TRUTH:# ycf = ycf_all_exp[I_train, i_exp]
# mu1f = mu1f_all_exp[I_train, i_exp]
# mu0f = mu0f_all_exp[I_train, i_exp]
t = t_all_exp[I_train, i_exp]
e = e_all_exp[I_train, i_exp] # torch.from_numpy(e_all_exp[:, i_exp]).float().reshape((-1,1))
# if "sample_alpha" in cfg.keys() and cfg.sample_alpha > 0:
# x, yf, e, t = sample_imb_fn(x, yf, e, t, cfg)
# logging.info("after sample_imb_fn. for t=1. x.shape:{},yf.shape:{},t.shape:{},e.shape:{}".format(x[t == 1].shape, yf[t == 1].shape,
# t[t == 1].shape, e[t == 1].shape))
# logging.info("after sample_imb_fn. for t=0. x.shape:{},yf.shape:{},t.shape:{},e.shape:{}".format(x[t == 0].shape, yf[t == 0].shape,
# t[t == 0].shape, e[t == 0].shape))
logging.info("training set: x.shape:{}".format(x.shape))
# pick exp i and I_valid validation set and convert to tensor dtype.
x_valid = torch.from_numpy(x_all_exp[I_valid, :, i_exp]).float().to(device)
yf_valid = torch.from_numpy(yf_all_exp[I_valid, i_exp]).float().reshape((-1, 1)).to(device)
# if HAVE_TRUTH:
# ycf_valid = torch.from_numpy(ycf_all_exp[I_valid, i_exp]).float().reshape((-1, 1)).to(device)
# mu1f_valid = torch.from_numpy(mu1f_all_exp[I_valid, i_exp]).float().reshape((-1, 1)).to(device)
# mu0f_valid = torch.from_numpy(mu0f_all_exp[I_valid, i_exp]).float().reshape((-1, 1)).to(device)
t_valid = torch.from_numpy(t_all_exp[I_valid, i_exp]).float().reshape((-1, 1)).to(device)
e_valid = torch.from_numpy(e_all_exp[I_valid, i_exp]).float().reshape((-1, 1)).to(device)
# pick exp i for test set and convert to tensor dtype.
x_test = torch.from_numpy(x_test_all_exp[:, :, i_exp]).float().to(device)
yf_test = torch.from_numpy(yf_test_all_exp[:, i_exp]).float().reshape((-1, 1)).to(device)
if IS_SYNT:
tau_test = torch.from_numpy(tau_test_all_exp[:, i_exp]).float().reshape((-1, 1)).to(device)
t_test = torch.unsqueeze(torch.from_numpy(t_test_all_exp[:, i_exp]).float().to(device), 1)
e_test = torch.unsqueeze(torch.from_numpy(e_test_all_exp[:, i_exp]).float().to(device), 1)
''' the whole train set, just use for prediction and convert to tensor dtype.'''
x_ = x_all_exp[:, :, i_exp]
yf_ = yf_all_exp[:, i_exp]
t_ = t_all_exp[:, i_exp]
e_ = e_all_exp[:, i_exp]
# and convert to tensors
x_train = torch.from_numpy(x_).float().to(device)
yf_train = torch.from_numpy(yf_).float().to(device).reshape((-1, 1))
t_train = torch.from_numpy(t_).float().to(device).reshape((-1, 1))
e_train = torch.from_numpy(e_).float().to(device).reshape((-1, 1))
if IS_SYNT:
tau_train = torch.from_numpy(tau_all_exp[:, i_exp]).float().reshape((-1, 1)).to(device)
''' true effect '''
if IS_SYNT:
eff_valid = tau_train[I_valid]
eff_test = tau_test
eff_train = tau_train
else:
eff_valid, eff_test, eff_train = None, None, None
''' print the proportion information. '''
if 0 == i_exp:
logging.info("exp_{}, Train. x.shape : {}".format(i_exp, x_.shape))
logging.info("exp_{}, Train. mean(t) : {}".format(i_exp, np.mean(t_)))
logging.info("exp_{}, Train. mean(t) when e=1: {}".format(i_exp, np.mean(t_[e_.astype(bool)])))
logging.info("exp_{}, Train. mean(yf) : {}".format(i_exp, np.mean(yf_)))
logging.info("exp_{}, Train. mean(yf) when t=1: {}".format(i_exp, np.mean(yf_[t_.astype(bool)])))
logging.info("exp_{}, Train. mean(yf) when t=0: {}".format(i_exp, np.mean(yf_[(1 - t_).astype(bool)])))
logging.info("exp_{}, Train. mean(yf) when t=0 and e=1: {}".format(i_exp, np.mean(
yf_[(e_ * (1 - t_)).astype(bool)])))
# if HAVE_TRUTH :
# logging.info("exp_{}, Train. mean(tau) : {}".format(i_exp, np.mean(abs(mu1f_ - mu0f_))))
''' test set '''
# print test set
logging.info("exp_{}, Test. x.shape : {}".format(i_exp, x_test.shape))
logging.info("exp_{}, Test. mean(t): {}".format(i_exp, torch.mean(t_test.float())))
logging.info("exp_{}, Test. mean(t) when e=1: {}".format(i_exp, torch.mean(t_test[e_test.bool()].float())))
logging.info("exp_{}, Test. mean(yf): {}".format(i_exp, torch.mean(yf_test)))
logging.info("exp_{}, Test. mean(yf) when t=1: {}".format(i_exp, torch.mean(yf_test[t_test.bool()])))
logging.info("exp_{}, Test. mean(yf) when t=0: {}".format(i_exp, torch.mean(yf_test[~t_test.bool()])))
logging.info(
"exp_{}, Test. mean(yf) when t=0 and e=1: {}".format(i_exp, torch.mean(
yf_test[((1 - t_test) * e_test).bool()])))
# if HAVE_TRUTH :
# logging.info("exp_{}, Test. mean(tau) : {}".format(i_exp, torch.mean(torch.abs(mu1f_test - mu0f_test))) )
# tmp = [(5,5),(6,6)]
# feature_extractor = FeatureExtractor(tmp) # pause
''' create graph
X learner
https://arxiv.org/abs/1706.03461
'''
model_name = ["propensity", "mu_t", "mu_c", "tau_t", "tau_c"]
models = {}
optimizers = {}
lr_schedulers = {}
for name in model_name:
models[name] = BaseModel4MetaLearner(input_dim=dim, base_dim=base_dim, cfg=cfg, device=device)
if cfg.optim == "SGD":
optimizers[name] = optim.SGD(models[name].parameters(), lr=cfg.lr, weight_decay=cfg.l2)
else:
optimizers[name] = optim.Adam(models[name].parameters(), lr=cfg.lr, weight_decay=cfg.l2)
lr_schedulers[name] = torch.optim.lr_scheduler.StepLR(optimizer=optimizers[name], step_size=cfg.decay_step_size,
gamma=cfg.decay_rate)
''' Build dataloader '''
dataset = ESXDataset(x, yf, t, e)
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Start fitting
for name in models.keys():
models[name].train()
if (cfg.verbose):
logging.info("exp_{} start trainning ...".format(i_exp))
train_step = 0
for epoch in range(epochs):
if ((epoch + 1) % LOGSTEP == 0):
logging.info("exp_i:{}, epoch:{} ...".format(i_exp, epoch))
# for i, (inputs, t_labels, y_labels) in tqdm.tqdm(enumerate(train_loader), total=len(train_loader)):
for i, (inputs, t_labels, y_labels, e_labels) in enumerate(train_loader):
if (y_labels.reshape(-1).shape[0] < batch_size):
continue
# logging.debug("epoch:{} .shape :{}".format(epoch, inputs.shape))
inputs.to(device)
t_labels = torch.unsqueeze(t_labels.to(device), 1)
y_labels = torch.unsqueeze(y_labels.to(device), 1)
e_labels = torch.unsqueeze(e_labels.to(device), 1) # e_ Labels is used to mark whether it is a random sample
# set loss functions
loss_fn = nn.BCELoss() # for probability
loss_with_logit_fn = nn.BCEWithLogitsLoss() # for logit
loss_mse = nn.MSELoss()
# The odd number of epoch is used for training mu_c,mu_t,propensity
# Even epochs are used for training tau_c, tau_t
if (epoch+1)%2 != 0:
train_list = ["mu_c", "mu_t", "propensity"]
else:
train_list = ["tau_c", "tau_t"]
# order by a list
for name in train_list:
models[name].train()
optimizers[name].zero_grad()
pred_logit = models[name](inputs)
if name == "propensity":
if not cfg.use_ps:
continue
loss = loss_with_logit_fn( pred_logit, t_labels)
elif name == "mu_c":
loss = loss_with_logit_fn(pred_logit[~t_labels.bool()], y_labels[~t_labels.bool()])
elif name == "mu_t":
loss = loss_with_logit_fn(pred_logit[t_labels.bool()], y_labels[t_labels.bool()])
elif name == "tau_c":
target = torch.sigmoid( models["mu_t"](inputs) )[~t_labels.bool()] - y_labels[~t_labels.bool()]
loss = loss_mse(pred_logit[~t_labels.bool()], target)
elif name == "tau_t":
target = y_labels[t_labels.bool()] - torch.sigmoid( models["mu_c"](inputs) )[t_labels.bool()]
loss = loss_mse(pred_logit[t_labels.bool()], target)
if i_exp == 0 and (train_step + 1) % LOGSTEP == 0 and cfg.verbose:
logging.info("epoch:{}, model:{}, loss:{}".format(epoch, name, loss))
# Backpropagation
loss.backward()
# Update parameters
optimizers[name].step()
# the first experiment only
if i_exp == 0 and (train_step + 1) % LOGSTEP == 0 and cfg.verbose:
for name in models.keys():
models[name].eval()
with torch.no_grad():
# validation
evalWithData("valid_set", models, writer, train_step, cfg, x_valid, yf_valid,
t_valid,
e_valid, eff_valid, i_exp
)
# test
evalWithData("test_set", models, writer, train_step, cfg, x_test, yf_test, t_test,
e_test, eff_test, i_exp
)
# train
evalWithData("train_set ", models, writer, train_step, cfg, x_train, yf_train,
t_train,
e_train, eff_train, i_exp
)
''' end loop for a epoch '''
train_step = train_step + 1
# update the learning rate
for name in train_list:
lr_schedulers[name].step()
# get learning rate
new_lr = lr_schedulers[name].get_last_lr()
logging.info(
"i_exp:{}, name:{}, epoch:{}, new learning rate is: {}".format(i_exp, name, epoch, new_lr))
''' end loop for epochs '''
''' predict every VALSTEP step and get results for each experiments'''
if ((epoch + 1)/2) % PREDSTEP == 0:
for name in models.keys():
models[name].eval()
# start to evel
logging.info(f'start to predict ... i_exp:{i_exp},epochs:{epoch}, train_step:{train_step}')
with torch.no_grad():
# for test
dict_result = evalWithData("test_pred_result", models, None, epoch, cfg, x_test, yf_test,
t_test,
e_test, eff_test
)
# append to list. for saving.
iexp_p_tau["test"].append(dict_result["p_tau"].cpu().detach().numpy()[:, 0])
iexp_losses["test"].append(dict_result["loss"])
if cfg.verbose > 0:
# for the whole training set
dict_result = evalWithData("train_pred_result", models, None, epoch, cfg, x_train, yf_train,
t_train,
e_train, eff_train
)
# append to list. for saving.
iexp_p_tau["train"].append(dict_result["p_tau"].cpu().detach().numpy()[:, 0])
train_total_loss = dict_result["loss"] # loss for the whole training set
# for validation
# dict_result = evalWithData("valid_pred_result", models, None, epoch, cfg, x_valid, yf_valid,
# t_valid,
# e_valid, eff_valid
# )
# # # append to list. for saving.
# # iexp_p_prpsy["valid"].append(dict_result["p_prpsy"].cpu().detach().numpy()[:, 0])
# # iexp_p_yf["valid"].append(dict_result["p_yf"].cpu().detach().numpy()[:, 0])
# # iexp_p_ycf["valid"].append(dict_result["p_ycf"].cpu().detach().numpy()[:, 0])
# # iexp_p_tau["valid"].append(dict_result["p_tau"].cpu().detach().numpy()[:, 0])
# iexp_losses["train"].append(train_total_loss + [dict_result["loss"][0]]) # append validation的loss
# only save the model for the first experiment.
# if i_exp == 0 and cfg.verbose:
# logging.info("exp_{} model saving...".format(i_exp))
# torch.save(models, "./{}_p{}.pth".format(cfg.model_name, i_exp))
# logging.info("exp_{} model saving...done.".format(i_exp))
# writer.close()
if cfg.verbose > 0:
group_list = ["train", "test"]
else:
group_list = ["test"]
''' save preidctions '''
for group in group_list:
# {"p_prpsy":[], "p_yf":[], "p_ycf":[], "p_tau":[], "loss":[]}
result_dict[group]["p_tau"].append(iexp_p_tau[group])
result_dict[group]["loss"].append(iexp_losses[group])
if group == "train":
result_dict[group]["val"].append(I_valid)
''' Format the prediction results and loss of ["train", "valid", "test"] data set and save them locally '''
for group in group_list:
'''units, exp_i, outputs'''
all_p_tau = np.array(np.swapaxes(np.swapaxes(result_dict[group]["p_tau"], 0, 2), 1, 2))
# all_p_mu1 = np.array(np.swapaxes(np.swapaxes(all_p_mu1, 0, 2), 1, 2))
# all_p_mu0 = np.array(np.swapaxes(np.swapaxes(all_p_mu0, 0, 2), 1, 2))
if group == "train":
''' exp_i, I_valid_set '''
all_I_valid = np.array(result_dict[group]["val"])
else:
all_I_valid = []
''' outputs, loss_list, exp_i '''
all_losses = np.swapaxes(np.swapaxes(result_dict[group]["loss"], 0, 1), 1, 2)
logging.info("saving predict result as a file...")
npz_file_path = "{}/{}_{}_result.test".format(cfg.pred_output_dir, cfg.model_name, group)
np.savez(npz_file_path, p_tau=all_p_tau, loss=all_losses, val=all_I_valid)
logging.info("saving predict result as a file: {}...done".format(npz_file_path))
# ./conf just contain a configuration template as default for configuration, which needs to be overwritten(key-value wise) by the hyper-parameters in ./conf4models
@hydra.main(config_path='./conf', config_name='conf_lzd_real_x_learner.yaml')
# @hydra.main(config_path='./conf', config_name='conf_lzd_real_bin_v0.yaml')
# @hydra.main(config_path='./conf', config_name='conf_acic_speed.yaml')
def main(cfg):
logging.info("log testing ...")
logging.info("cfg:{}".format(cfg))
logging.debug("cfg:{}".format(cfg))
# Load data
logging.info("training dataset loading ...")
data_dict = load_data(cfg.data_train_path)
# data_dict = gen_data(10000, 50)
logging.info("training dataset loading ...done.")
logging.info("test dataset loading ....")
data_test_dict = load_data(cfg.data_test_path)
# data_test_dict = gen_data(5000, 50)
logging.info("test dataset loading ...done.")
# Encode dataset
# category_columns = list(cfg.columns.feature_columns)
# encoder = OrdinalEncoder(cols=category_columns, handle_unknown='impute').fit(df_train)
# df_train_encoded = encoder.transform(df_train)
if (not os.path.exists(cfg.pred_output_dir)):
os.mkdir(cfg.pred_output_dir)
# Start train
if torch.cuda.is_available() and cfg.device != 'cpu':
if cfg.device == 'cuda:0':
device = torch.device('cuda:0')
elif cfg.device == 'cuda:1':
device = torch.device('cuda:1')
else:
device = torch.device('cuda')
logging.info("Use GPU {}.".format(cfg.device))
else:
logging.info("Use CPU.")
device = 'cpu'
train(data_dict, data_test_dict, device, cfg)
if __name__ == '__main__':
seed_torch(2)
main()