-
Notifications
You must be signed in to change notification settings - Fork 103
/
bnaf.py
471 lines (388 loc) · 20.2 KB
/
bnaf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""
Implementation of Block Neural Autoregressive Flow
http://arxiv.org/abs/1904.04676
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions as D
from torch.utils.data import DataLoader, TensorDataset
import math
import os
import time
import argparse
import pprint
from functools import partial
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from tqdm import tqdm
parser = argparse.ArgumentParser()
# action
parser.add_argument('--train', action='store_true', help='Train a flow.')
parser.add_argument('--plot', action='store_true', help='Plot a flow and target density.')
parser.add_argument('--restore_file', type=str, help='Path to model to restore.')
parser.add_argument('--output_dir', default='./results/{}'.format(os.path.splitext(__file__)[0]))
parser.add_argument('--cuda', type=int, help='Which GPU to run on.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
# target density
parser.add_argument('--dataset', type=str, help='Which potential function to approximate.')
# model parameters
parser.add_argument('--data_dim', type=int, default=2, help='Dimension of the data.')
parser.add_argument('--hidden_dim', type=int, default=100, help='Dimensions of hidden layers.')
parser.add_argument('--n_hidden', type=int, default=3, help='Number of hidden layers.')
# training parameters
parser.add_argument('--step', type=int, default=0, help='Current step of training (number of minibatches processed).')
parser.add_argument('--n_steps', type=int, default=1, help='Number of steps to train.')
parser.add_argument('--batch_size', type=int, default=200, help='Training batch size.')
parser.add_argument('--lr', type=float, default=1e-1, help='Initial learning rate.')
parser.add_argument('--lr_decay', type=float, default=0.5, help='Learning rate decay.')
parser.add_argument('--lr_patience', type=float, default=2000, help='Number of steps before decaying learning rate.')
parser.add_argument('--log_interval', type=int, default=50, help='How often to save model and samples.')
# --------------------
# Data
# --------------------
def potential_fn(dataset):
# NF paper table 1 energy functions
w1 = lambda z: torch.sin(2 * math.pi * z[:,0] / 4)
w2 = lambda z: 3 * torch.exp(-0.5 * ((z[:,0] - 1)/0.6)**2)
w3 = lambda z: 3 * torch.sigmoid((z[:,0] - 1) / 0.3)
if dataset == 'u1':
return lambda z: 0.5 * ((torch.norm(z, p=2, dim=1) - 2) / 0.4)**2 - \
torch.log(torch.exp(-0.5*((z[:,0] - 2) / 0.6)**2) + \
torch.exp(-0.5*((z[:,0] + 2) / 0.6)**2) + 1e-10)
elif dataset == 'u2':
return lambda z: 0.5 * ((z[:,1] - w1(z)) / 0.4)**2
elif dataset == 'u3':
return lambda z: - torch.log(torch.exp(-0.5*((z[:,1] - w1(z))/0.35)**2) + \
torch.exp(-0.5*((z[:,1] - w1(z) + w2(z))/0.35)**2) + 1e-10)
elif dataset == 'u4':
return lambda z: - torch.log(torch.exp(-0.5*((z[:,1] - w1(z))/0.4)**2) + \
torch.exp(-0.5*((z[:,1] - w1(z) + w3(z))/0.35)**2) + 1e-10)
else:
raise RuntimeError('Invalid potential name to sample from.')
def sample_2d_data(dataset, n_samples):
z = torch.randn(n_samples, 2)
if dataset == '8gaussians':
scale = 4
sq2 = 1/math.sqrt(2)
centers = [(1,0), (-1,0), (0,1), (0,-1), (sq2,sq2), (-sq2,sq2), (sq2,-sq2), (-sq2,-sq2)]
centers = torch.tensor([(scale * x, scale * y) for x,y in centers])
return sq2 * (0.5 * z + centers[torch.randint(len(centers), size=(n_samples,))])
elif dataset == '2spirals':
n = torch.sqrt(torch.rand(n_samples // 2)) * 540 * (2 * math.pi) / 360
d1x = - torch.cos(n) * n + torch.rand(n_samples // 2) * 0.5
d1y = torch.sin(n) * n + torch.rand(n_samples // 2) * 0.5
x = torch.cat([torch.stack([ d1x, d1y], dim=1),
torch.stack([-d1x, -d1y], dim=1)], dim=0) / 3
return x + 0.1*z
elif dataset == 'checkerboard':
x1 = torch.rand(n_samples) * 4 - 2
x2_ = torch.rand(n_samples) - torch.randint(0, 2, (n_samples,), dtype=torch.float) * 2
x2 = x2_ + x1.floor() % 2
return torch.stack([x1, x2], dim=1) * 2
elif dataset == 'rings':
n_samples4 = n_samples3 = n_samples2 = n_samples // 4
n_samples1 = n_samples - n_samples4 - n_samples3 - n_samples2
# so as not to have the first point = last point, set endpoint=False in np; here shifted by one
linspace4 = torch.linspace(0, 2 * math.pi, n_samples4 + 1)[:-1]
linspace3 = torch.linspace(0, 2 * math.pi, n_samples3 + 1)[:-1]
linspace2 = torch.linspace(0, 2 * math.pi, n_samples2 + 1)[:-1]
linspace1 = torch.linspace(0, 2 * math.pi, n_samples1 + 1)[:-1]
circ4_x = torch.cos(linspace4)
circ4_y = torch.sin(linspace4)
circ3_x = torch.cos(linspace4) * 0.75
circ3_y = torch.sin(linspace3) * 0.75
circ2_x = torch.cos(linspace2) * 0.5
circ2_y = torch.sin(linspace2) * 0.5
circ1_x = torch.cos(linspace1) * 0.25
circ1_y = torch.sin(linspace1) * 0.25
x = torch.stack([torch.cat([circ4_x, circ3_x, circ2_x, circ1_x]),
torch.cat([circ4_y, circ3_y, circ2_y, circ1_y])], dim=1) * 3.0
# random sample
x = x[torch.randint(0, n_samples, size=(n_samples,))]
# Add noise
return x + torch.normal(mean=torch.zeros_like(x), std=0.08*torch.ones_like(x))
else:
raise RuntimeError('Invalid `dataset` to sample from.')
# --------------------
# Model components
# --------------------
class MaskedLinear(nn.Module):
def __init__(self, in_features, out_features, data_dim):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.data_dim = data_dim
# Notation:
# BNAF weight calculation for (eq 8): W = g(W) * M_d + W * M_o
# where W is block lower triangular so model is autoregressive,
# g = exp function; M_d is block diagonal mask; M_o is block off-diagonal mask.
# Weight Normalization (Salimans & Kingma, eq 2): w = g * v / ||v||
# where g is scalar, v is k-dim vector, ||v|| is Euclidean norm
# ------
# Here: pre-weight norm matrix is v; then: v = exp(weight) * mask_d + weight * mask_o
# weight-norm scalar is g: out_features dimensional vector (here logg is used instead to avoid taking logs in the logdet calc.
# then weight-normed weight matrix is w = g * v / ||v||
#
# log det jacobian of block lower triangular is taking block diagonal mask of
# log(g*v/||v||) = log(g) + log(v) - log(||v||)
# = log(g) + weight - log(||v||) since v = exp(weight) * mask_d + weight * mask_o
weight = torch.zeros(out_features, in_features)
mask_d = torch.zeros_like(weight)
mask_o = torch.zeros_like(weight)
for i in range(data_dim):
# select block slices
h = slice(i * out_features // data_dim, (i+1) * out_features // data_dim)
w = slice(i * in_features // data_dim, (i+1) * in_features // data_dim)
w_row = slice(0, (i+1) * in_features // data_dim)
# initialize block-lower-triangular weight and construct block diagonal mask_d and lower triangular mask_o
nn.init.kaiming_uniform_(weight[h,w_row], a=math.sqrt(5)) # default nn.Linear weight init only block-wise
mask_d[h,w] = 1
mask_o[h,w_row] = 1
mask_o = mask_o - mask_d # remove diagonal so mask_o is lower triangular 1-off the diagonal
self.weight = nn.Parameter(weight) # pre-mask, pre-weight-norm
self.logg = nn.Parameter(torch.rand(out_features, 1).log()) # weight-norm parameter
self.bias = nn.Parameter(nn.init.uniform_(torch.rand(out_features), -1/math.sqrt(in_features), 1/math.sqrt(in_features))) # default nn.Linear bias init
self.register_buffer('mask_d', mask_d)
self.register_buffer('mask_o', mask_o)
def forward(self, x, sum_logdets):
# 1. compute BNAF masked weight eq 8
v = self.weight.exp() * self.mask_d + self.weight * self.mask_o
# 2. weight normalization
v_norm = v.norm(p=2, dim=1, keepdim=True)
w = self.logg.exp() * v / v_norm
# 3. compute output and logdet of the layer
out = F.linear(x, w, self.bias)
logdet = self.logg + self.weight - 0.5 * v_norm.pow(2).log()
logdet = logdet[self.mask_d.byte()]
logdet = logdet.view(1, self.data_dim, out.shape[1]//self.data_dim, x.shape[1]//self.data_dim) \
.expand(x.shape[0],-1,-1,-1) # output (B, data_dim, out_dim // data_dim, in_dim // data_dim)
# 4. sum with sum_logdets from layers before (BNAF section 3.3)
# Compute log det jacobian of the flow (eq 9, 10, 11) using log-matrix multiplication of the different layers.
# Specifically for two successive MaskedLinear layers A -> B with logdets A and B of shapes
# logdet A is (B, data_dim, outA_dim, inA_dim)
# logdet B is (B, data_dim, outB_dim, inB_dim) where outA_dim = inB_dim
#
# Note -- in the first layer, inA_dim = in_features//data_dim = 1 since in_features == data_dim.
# thus logdet A is (B, data_dim, outA_dim, 1)
#
# Then:
# logsumexp(A.transpose(2,3) + B) = logsumexp( (B, data_dim, 1, outA_dim) + (B, data_dim, outB_dim, inB_dim) , dim=-1)
# = logsumexp( (B, data_dim, 1, outA_dim) + (B, data_dim, outB_dim, outA_dim), dim=-1)
# = logsumexp( (B, data_dim, outB_dim, outA_dim), dim=-1) where dim2 of tensor1 is broadcasted
# = (B, data_dim, outB_dim, 1)
sum_logdets = torch.logsumexp(sum_logdets.transpose(2,3) + logdet, dim=-1, keepdim=True)
return out, sum_logdets
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class Tanh(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, sum_logdets):
# derivation of logdet:
# d/dx tanh = 1 / cosh^2; cosh = (1 + exp(-2x)) / (2*exp(-x))
# log d/dx tanh = - 2 * log cosh = -2 * (x - log 2 + log(1 + exp(-2x)))
logdet = -2 * (x - math.log(2) + F.softplus(-2*x))
sum_logdets = sum_logdets + logdet.view_as(sum_logdets)
return x.tanh(), sum_logdets
class FlowSequential(nn.Sequential):
""" Container for layers of a normalizing flow """
def forward(self, x):
sum_logdets = torch.zeros(1, x.shape[1], 1, 1, device=x.device)
for module in self:
x, sum_logdets = module(x, sum_logdets)
return x, sum_logdets.squeeze()
# --------------------
# Model
# --------------------
class BNAF(nn.Module):
def __init__(self, data_dim, n_hidden, hidden_dim):
super().__init__()
# base distribution for calculation of log prob under the model
self.register_buffer('base_dist_mean', torch.zeros(data_dim))
self.register_buffer('base_dist_var', torch.ones(data_dim))
# construct model
modules = []
modules += [MaskedLinear(data_dim, hidden_dim, data_dim), Tanh()]
for _ in range(n_hidden):
modules += [MaskedLinear(hidden_dim, hidden_dim, data_dim), Tanh()]
modules += [MaskedLinear(hidden_dim, data_dim, data_dim)]
self.net = FlowSequential(*modules)
# TODO -- add permutation
# add residual gate
# add stack of flows
@property
def base_dist(self):
return D.Normal(self.base_dist_mean, self.base_dist_var)
def forward(self, x):
return self.net(x)
def compute_kl_qp_loss(model, target_potential_fn, batch_size):
""" Compute BNAF eq 3 & 20:
KL(q_inv||p) where q_inv is the inverse flow transform (log_q_inv = log_q_base - logdet), p is the target distribution (energy potential)
Returns the minimization objective for density matching. """
z = model.base_dist.sample((batch_size,))
q_log_prob = model.base_dist.log_prob(z)
zk, logdet = model(z)
p_log_prob = - target_potential_fn(zk) # p = exp(-potential) => log_p = - potential
return q_log_prob.sum(1) - logdet.sum(1) - p_log_prob # BNAF eq 20
def compute_kl_pq_loss(model, sample_2d_data_fn, batch_size):
""" Compute BNAF eq 2 & 16:
KL(p||q_fwd) where q_fwd is the forward flow transform (log_q_fwd = log_q_base + logdet), p is the target distribution.
Returns the minimization objective for density estimation (NLL under the flow since the entropy of the target dist is fixed wrt the optimization) """
sample = sample_2d_data_fn(batch_size).to(model.base_dist.loc.device)
z, logdet = model(sample)
return - torch.sum(model.base_dist.log_prob(z) + logdet, dim=1)
# --------------------
# Training
# --------------------
def train_flow(model, potential_or_sampling_fn, loss_fn, optimizer, scheduler, args):
model.train()
with tqdm(total=args.n_steps, desc='Start step {}; Training for {} steps'.format(args.step, args.n_steps)) as pbar:
for _ in range(args.n_steps):
args.step += 1
loss = loss_fn(model, potential_or_sampling_fn, args.batch_size).mean(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step(loss)
pbar.set_postfix(loss = '{:.3f}'.format(loss.item()))
pbar.update()
if args.step % args.log_interval == 0:
# save model
torch.save({'step': args.step,
'state_dict': model.state_dict()},
os.path.join(args.output_dir, 'checkpoint.pt'))
torch.save({'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()},
os.path.join(args.output_dir, 'optim_checkpoint.pt'))
# plot and save results
plot(model, potential_or_sampling_fn, args)
# --------------------
# Plotting
# --------------------
@torch.no_grad()
def plot(model, potential_or_sampling_fn, args):
n_pts = 1000
range_lim = 4
# construct test points
test_grid = setup_grid(range_lim, n_pts, args)
# plot
if args.samples:
fig, axs = plt.subplots(1, 2, figsize=(8,4), subplot_kw={'aspect': 'equal'})
plot_samples(potential_or_sampling_fn, axs[0], range_lim, n_pts)
plot_fwd_flow_density(model, axs[1], test_grid, n_pts, args.batch_size)
else:
fig, axs = plt.subplots(1, 3, figsize=(12,4.3), subplot_kw={'aspect': 'equal'})
plot_potential(potential_or_sampling_fn, axs[0], test_grid, n_pts)
plot_inv_flow_density(model, axs[1], test_grid, n_pts, args.batch_size)
plot_flow_samples(model, axs[2], n_pts, args.batch_size)
# format
for ax in plt.gcf().axes: format_ax(ax, range_lim)
plt.tight_layout()
# save
plt.savefig(os.path.join(args.output_dir, 'vis_step_{}.png'.format(args.step)))
plt.close()
def setup_grid(range_lim, n_pts, args):
x = torch.linspace(-range_lim, range_lim, n_pts)
xx, yy = torch.meshgrid((x, x))
zz = torch.stack((xx.flatten(), yy.flatten()), dim=1)
return xx, yy, zz.to(args.device)
def format_ax(ax, range_lim):
ax.set_xlim(-range_lim, range_lim)
ax.set_ylim(-range_lim, range_lim)
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.invert_yaxis()
def plot_potential(potential_fn, ax, test_grid, n_pts):
xx, yy, zz = test_grid
ax.pcolormesh(xx, yy, torch.exp(-potential_fn(zz)).view(n_pts,n_pts).cpu().data, cmap=plt.cm.jet)
ax.set_title('Target density')
def plot_samples(samples_fn, ax, range_lim, n_pts):
samples = samples_fn(n_pts**2).numpy()
ax.hist2d(samples[:,0], samples[:,1], range=[[-range_lim, range_lim], [-range_lim, range_lim]], bins=n_pts, cmap=plt.cm.jet)
ax.set_title('Target samples')
def plot_flow_samples(model, ax, n_pts, batch_size):
z = model.base_dist.sample((n_pts**2,))
zk = torch.cat([model(z_)[0] for z_ in z.split(batch_size, dim=0)], 0)
zk = zk.cpu().numpy()
# plot
ax.hist2d(zk[:,0], zk[:,1], bins=n_pts, cmap=plt.cm.jet)
ax.set_facecolor(plt.cm.jet(0.))
ax.set_title('Flow samples')
def plot_fwd_flow_density(model, ax, test_grid, n_pts, batch_size):
""" plots square grid and flow density; where density under the flow is exp(log_flow_base_dist + logdet) """
xx, yy, zz = test_grid
# compute posterior approx density
zzk, logdets = [], []
for zz_i in zz.split(batch_size, dim=0):
zzk_i, logdets_i = model(zz_i)
zzk += [zzk_i]
logdets += [logdets_i]
zzk, logdets = torch.cat(zzk, 0), torch.cat(logdets, 0)
log_prob = model.base_dist.log_prob(zzk) + logdets
prob = log_prob.sum(1).exp().cpu()
# plot
ax.pcolormesh(xx, yy, prob.view(n_pts,n_pts), cmap=plt.cm.jet)
ax.set_facecolor(plt.cm.jet(0.))
ax.set_title('Flow density')
def plot_inv_flow_density(model, ax, test_grid, n_pts, batch_size):
""" plots transformed grid and density; where density is exp(loq_flow_base_dist - logdet) """
xx, yy, zz = test_grid
# compute posterior approx density
zzk, logdets = [], []
for zz_i in zz.split(batch_size, dim=0):
zzk_i, logdets_i = model(zz_i)
zzk += [zzk_i]
logdets += [logdets_i]
zzk, logdets = torch.cat(zzk, 0), torch.cat(logdets, 0)
log_q0 = model.base_dist.log_prob(zz)
log_qk = log_q0 - logdets
qk = log_qk.sum(1).exp().cpu()
zzk = zzk.cpu()
# plot
ax.pcolormesh(zzk[:,0].view(n_pts,n_pts), zzk[:,1].view(n_pts,n_pts), qk.view(n_pts,n_pts), cmap=plt.cm.jet)
ax.set_facecolor(plt.cm.jet(0.))
ax.set_title('Flow density')
if __name__ == '__main__':
args = parser.parse_args()
args.output_dir = os.path.dirname(args.restore_file) if args.restore_file else os.path.join(args.output_dir, time.strftime('%Y-%m-%d_%H-%M-%S', time.gmtime()))
if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir)
args.device = torch.device('cuda:{}'.format(args.cuda) if args.cuda is not None and torch.cuda.is_available() else 'cpu')
torch.manual_seed(args.seed)
if args.device.type == 'cuda': torch.cuda.manual_seed(args.seed)
model = BNAF(args.data_dim, args.n_hidden, args.hidden_dim).to(args.device)
if args.restore_file:
model_checkpoint = torch.load(args.restore_file, map_location=args.device)
model.load_state_dict(model_checkpoint['state_dict'])
args.step = model_checkpoint['step']
# save settings
config = 'Parsed args:\n{}\n\n'.format(pprint.pformat(args.__dict__)) + \
'Num trainable params: {:,.0f}\n\n'.format(sum(p.numel() for p in model.parameters())) + \
'Model:\n{}'.format(model)
config_path = os.path.join(args.output_dir, 'config.txt')
if not os.path.exists(config_path):
with open(config_path, 'a') as f:
print(config, file=f)
# setup data -- density to estimate/match
args.samples = not (args.dataset.startswith('u') and len(args.dataset) == 2)
if args.samples:
# target is density to estimate
potential_or_sampling_fn = partial(sample_2d_data, args.dataset)
loss_fn = compute_kl_pq_loss
else:
# target is energy potential to match
potential_or_sampling_fn = potential_fn(args.dataset)
loss_fn = compute_kl_qp_loss
if args.train:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.lr_decay, patience=args.lr_patience, verbose=True)
if args.restore_file:
optim_checkpoint = torch.load(os.path.dirname(args.restore_file) + '/optim_checkpoint.pt', map_location=args.device)
optimizer.load_state_dict(optim_checkpoint['optimizer'])
scheduler.load_state_dict(optim_checkpoint['scheduler'])
train_flow(model, potential_or_sampling_fn, loss_fn, optimizer, scheduler, args)
if args.plot:
plot(model, potential_or_sampling_fn, args)