-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
186 lines (149 loc) · 5.5 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import io
import gzip
import collections
import torch
import torch.utils.data as td
import utils
class TextFileReader(utils.UniversalFileReader):
def __init__(self):
super(TextFileReader, self).__init__("txt")
def open_txt(self, path):
return open(path, "r")
def open_gz(self, path):
return io.TextIOWrapper(gzip.open(path, "r"))
def pad_tensor(x, size, pad_idx=0):
if size <= 0:
return x
padding = x.new(size).fill_(pad_idx)
return torch.cat([x, padding])
def pad_sequences(x, max_len=None, pad_idx=0):
if max_len is None:
max_len = max(map(len, x))
x = [pad_tensor(t, max_len - len(t), pad_idx) for t in x]
x = torch.stack(x)
return x
class TextSequenceDataset(td.Dataset):
FEATURES = {
"string",
"tensor"
}
def __init__(self, paths, feats=None, vocabs=None, vocab_limit=None,
pad_bos=None, pad_eos=None, unk="<unk>"):
if feats is None:
feats = self.FEATURES
if not isinstance(vocabs, collections.Sequence):
vocabs = [vocabs] * len(paths)
self.paths = paths
self.feats = feats
self.vocabs = vocabs
self.vocab_limit = vocab_limit
self.pad_eos = pad_eos
self.pad_bos = pad_bos
self.unk = unk
self.unk_idxs = [None] * len(paths)
self.data = None
if self.feats is None:
self.feats = [""]
for feat in feats:
utils.assert_oneof(feat, self.FEATURES, "sequence feature")
self.getdata_map = {
feat: getattr(self, f"get_{feat}") for feat in self.FEATURES
}
for feat in self.getdata_map:
utils.assert_oneof(feat, self.FEATURES)
self._load_data()
def _load_data(self):
reader = TextFileReader()
self.data = []
for path in self.paths:
with reader(path) as f:
data = [line.rstrip().split() for line in f]
if self.pad_eos is not None:
data = [sent + [self.pad_eos] for sent in data]
if self.pad_bos is not None:
data = [[self.pad_bos] + sent for sent in data]
self.data.append(data)
self.data = list(zip(*self.data))
for i in range(len(self.vocabs)):
vocab = self.vocabs[i]
if vocab is None:
vocab = utils.Vocabulary()
utils.populate_vocab(
words=[w for s in self.data for w in s[i]],
vocab=vocab,
cutoff=self.vocab_limit
)
vocab.add("<unk>")
self.vocabs[i] = vocab
self.unk_idxs[i] = vocab.f2i.get(self.unk)
def _word2idx(self, i, w):
vocab, unk_idx = self.vocabs[i], self.unk_idxs[i]
return vocab.f2i.get(w, unk_idx)
def get_string(self, tokens_list):
return tuple(" ".join(tokens) for tokens in tokens_list)
def get_tensor(self, tokens_list):
return tuple(torch.LongTensor([self._word2idx(i, w)
for w in tokens])
for i, tokens in enumerate(tokens_list))
def __len__(self):
return len(self.data)
def __getitem__(self, item):
ret = dict()
tokens_list = self.data[item]
for feat in self.feats:
ret[feat] = self.getdata_map[feat](tokens_list)
return ret
class TextSequenceBatchCollator(object):
FEATURES = {
"string": "list",
"tensor": "tensorvarlist"
}
DATA_TYPES = {
"list",
"tensor",
"tensorlist",
"tensorvar",
"tensorvarlist"
}
def __init__(self, pad_idxs=0):
self.pad_idxs = pad_idxs
self.collate_map = {
dt: getattr(self, f"collate_{dt}") for dt in self.DATA_TYPES
}
# sanity check
for dt in self.collate_map:
utils.assert_oneof(dt, self.DATA_TYPES)
assert set(self.FEATURES) == set(TextSequenceDataset.FEATURES)
def collate_list(self, batch):
return batch
def collate_tensor(self, batch):
return torch.stack(batch)
def collate_tensorvar(self, batch, pad_idx=None):
lens = torch.LongTensor(list(map(len, batch)))
max_len = lens.max().item()
if pad_idx is None:
pad_idx = self.pad_idxs[0]
return pad_sequences(batch, max_len, pad_idx), lens
def collate_tensorlist(self, batch):
batch = list(zip(*batch))
return [self.collate_tensor(b) for b in batch]
def collate_tensorvarlist(self, batch):
pad_idxs = self.pad_idxs
if not isinstance(pad_idxs, collections.Sequence):
pad_idxs = [pad_idxs] * len(batch)
batch = list(zip(*batch))
return [self.collate_tensorvar(b, pad_idx)
for b, pad_idx in zip(batch, pad_idxs)]
def __call__(self, batches):
sample = batches[0]
ret = dict()
for feat in sample:
items = [inst[feat] for inst in batches]
dt = self.FEATURES[feat]
collate_fn = self.collate_map[dt]
ret[feat] = collate_fn(items)
return ret
# dataset = TextSequenceDataset(r"D:\Downloads\SlotGated-SLU-master\SlotGated-SLU-master\data\atis\train\seq.in.txt", feats=["string", "tensor"])
# collator = TextSequenceBatchCollator(len(dataset.vocab))
# dataloader = td.DataLoader(dataset, batch_size=32, collate_fn=collator, shuffle=True)
# print(next(iter(dataloader))["tensor"][1].size())