-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
231 lines (196 loc) · 7.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import logging
import argparse
import torch
import torch.nn as nn
import torch.utils.data as td
import utils
import model
import dataset
from model import embedding
from train import embeds
MODES = model.MODES
parser = argparse.ArgumentParser(
fromfile_prefix_chars="@",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
group = parser.add_argument_group("Logging Options")
utils.add_logging_arguments(group, "predict")
group.add_argument("--argparse-filename",
type=str, default="predict.args")
group.add_argument("--show-progress", action="store_true", default=False)
group = parser.add_argument_group("Data Options")
group.add_argument("--word-path", type=str, required=True)
for mode in MODES:
group.add_argument(f"--{mode}-vocab", type=str, required=True)
group.add_argument("--data-workers", type=int, default=8)
group.add_argument("--seed", type=int, default=None)
group.add_argument("--unk", type=str, default="<unk>")
group.add_argument("--eos", type=str, default="<eos>")
group.add_argument("--bos", type=str, default="<bos>")
group = parser.add_argument_group("Prediction Options")
group.add_argument("--ckpt-path", type=str, required=True)
group.add_argument("--batch-size", type=int, default=32)
group.add_argument("--save-dir", type=str, required=True)
for mode in MODES[1:]:
group.add_argument(f"--{mode}-filename", type=str, default=f"{mode}.txt")
group.add_argument(f"--{mode}-probs-filename",
type=str, default=f"{mode}-probs.txt")
group.add_argument("--beam-size", type=int, default=6)
group.add_argument("--expand-vocab", action="store_true", default=False)
embeds.add_embed_arguments(group)
group.add_argument("--gpu", type=int, action="append", default=[])
group = parser.add_argument_group("Model Options")
model.add_arguments(group)
def prepare_dataset(args, vocab):
dset = dataset.TextSequenceDataset(
paths=[args.word_path],
feats=["string", "tensor"],
vocabs=[vocab],
pad_eos=args.eos,
pad_bos=args.bos,
unk=args.unk
)
return dset
def prepare_model(args, vocabs):
mdl = model.create_model(args, vocabs)
mdl.reset_parameters()
ckpt = torch.load(args.ckpt_path)
mdl.load_state_dict(ckpt)
if args.expand_vocab:
mdl_vocab = vocabs[0]
mdl_emb = mdl.embeds[0].weight
emb = embeds.get_embeddings(args)
emb.preload()
emb = {w: v for w, v in emb}
for rword in [args.bos, args.eos, args.unk]:
emb[rword] = mdl_emb[mdl_vocab.f2i.get(rword)].detach().numpy()
vocab = utils.Vocabulary()
utils.populate_vocab(emb.keys(), vocab)
mdl.embeds[0] = embedding.BasicEmbedding(
vocab_size=len(vocab),
dim=mdl.word_dim,
allow_padding=True
)
embeds._load_embeddings(mdl.embeds[0], vocab, emb.items())
else:
vocab = vocabs[0]
return mdl, vocab
class Predictor(object):
def __init__(self, model, device, batch_size, beam_size,
sent_vocab, label_vocab, intent_vocab, bos, eos, unk,
tensor_key="tensor"):
self.model = model
self.device = device
self.batch_size = batch_size
self.beam_size = beam_size
self.sent_vocab = sent_vocab
self.label_vocab = label_vocab
self.intent_vocab = intent_vocab
self.vocabs = [self.sent_vocab, self.label_vocab, self.intent_vocab]
self.bos = bos
self.eos = eos
self.unk = unk
self.bos_idxs = [v.f2i.get(bos) for v in self.vocabs]
self.eos_idxs = [v.f2i.get(eos) for v in self.vocabs]
self.unk_idxs = [v.f2i.get(unk) for v in self.vocabs]
self.tensor_key = tensor_key
@property
def module(self):
if isinstance(self.model, nn.DataParallel):
return self.model.module
else:
return self.model
def sample_z(self, num_samples):
return torch.randn(num_samples, self.module.z_dim).to(self.device)
def to_sent(self, idx, vocab):
return " ".join(vocab.i2f.get(w, self.unk) for w in idx)
def validate(self, sent, labels, intent, length, w_prob, l_prob):
"""validate a single instance of sample"""
words, labels = sent.split(), labels.split()
def ensure_enclosed(x):
return x[0] == self.bos and x[-1] == self.eos
if not ensure_enclosed(words) or not ensure_enclosed(labels):
return False
if len(words) != len(labels):
return False
return True
def prepare_batch(self, batch):
data = batch[self.tensor_key]
data = [(x.to(self.device), lens.to(self.device)) for x, lens in data]
batch_size = data[0][0].size(0)
return batch_size, data[0]
def predict(self, dataloader):
vocabs = [self.sent_vocab, self.label_vocab, self.intent_vocab]
self.model.train(False)
progress = utils.tqdm(total=len(dataloader.dataset), desc="predicting")
preds = []
for batch in dataloader:
batch_size, (w, lens) = self.prepare_batch(batch)
progress.update(batch_size)
(labels, intents), (pl, pi) = self.model.predict(
w, lens,
label_bos=self.bos_idxs[1],
beam_size=self.beam_size
)
labels, intents, lens, pl, pi = \
[x.cpu().tolist() for x in [labels, intents, lens, pl, pi]]
labels = [self.to_sent(label[:l], vocabs[1])
for label, l in zip(labels, lens)]
intents = [self.to_sent([i], vocabs[2]) for i in intents]
preds.extend(list(zip(labels, intents, pl, pi)))
progress.close()
labels, intents, pl, pi = list(zip(*preds))
return (labels, intents), (pl, pi)
def save(args, labels, intents, pl, pi):
labels = [" ".join(label.split()[1:-1]) for label in labels]
pl, pi = [list(map(str, p)) for p in [pl, pi]]
samples = [labels, intents, pl, pi]
fnames = [args.label_filename, args.intent_filename,
args.label_probs_filename, args.intent_probs_filename]
paths = [os.path.join(args.save_dir, fn) for fn in fnames]
for data, path in zip(samples, paths):
with open(path, "w") as f:
for sample in data:
f.write(f"{sample}\n")
def report_stats(args, labels, intents, pl, pi):
pass
def predict(args):
devices = utils.get_devices(args.gpu)
if args.seed is not None:
utils.manual_seed(args.seed)
logging.info("Loading data...")
vocab_paths = [getattr(args, f"{mode}_vocab") for mode in MODES]
vocabs = [utils.load_pkl(v) for v in vocab_paths]
test_dataset = prepare_dataset(args, vocabs[0])
test_dataloader = td.DataLoader(
dataset=test_dataset,
batch_size=args.batch_size,
num_workers=args.data_workers,
collate_fn=dataset.TextSequenceBatchCollator(
pad_idxs=[len(v) for v in vocabs]
)
)
logging.info("Initializing generation environment...")
model, vocabs[0] = prepare_model(args, vocabs)
model = utils.to_device(model, devices)
predictor = Predictor(
model=model,
device=devices[0],
batch_size=args.batch_size,
sent_vocab=vocabs[0],
label_vocab=vocabs[1],
intent_vocab=vocabs[2],
bos=args.bos,
eos=args.eos,
unk=args.unk,
beam_size=args.beam_size,
)
logging.info("Commencing prediction...")
with torch.no_grad():
(labels, intents), (pl, pi) = predictor.predict(test_dataloader)
report_stats(args, labels, intents, pl, pi)
save(args, labels, intents, pl, pi)
logging.info("Done!")
if __name__ == "__main__":
predict(utils.initialize_script(parser))