forked from RUCAIBox/LLMBox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpo.py
150 lines (119 loc) · 4.52 KB
/
dpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from dataclasses import dataclass
from typing import Dict, Optional, Sequence
import logging
import warnings
import torch
import transformers
from accelerate.utils import set_seed
from datasets import Dataset, load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments
from transformers.hf_argparser import HfArg
from trl import DPOTrainer
@dataclass
class Arguments(TrainingArguments):
model_name_or_path: str = HfArg(
default=None,
help="The model name or path, e.g., `meta-llama/Llama-2-7b-hf` or `./output/saved_model`",
)
data_path: str = HfArg(
default=None,
help="The path of preference dataset, e.g., `Anthropic/hh-rlhf`, `Dahoas/rm-static` or `Dahoas/synthetic-instruct-gptj-pairwise`",
)
model_max_length: int = HfArg(
default=512,
help="Maximum sequence length. Sequences will be right padded (and possibly truncated)."
)
bf16: bool = HfArg(
default=True,
help="Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA"
" architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change.",
)
tf32: Optional[bool] = HfArg(
default=True,
help="Whether to enable tf32 mode, available in Ampere and newer GPU architectures. This is an experimental"
" API and it may change.",
)
cache_dir: str = HfArg(default=None)
beta: float = HfArg(
default=0.1,
help="The beta factor in DPO loss."
"Higher beta means less divergence from the initial policy.",
)
loss_type: str = HfArg(
default="sigmoid",
help="The type of DPO loss to use, e.g., `sigmoid`, `hinge` or `ipo`",
)
def get_data(split: str, data_path) -> Dataset:
dataset = load_dataset(split=split, path=data_path)
def split_prompt_and_responses_hh(sample) -> Dict[str, str]:
search_term = "\n\nAssistant:"
search_term_idx = sample["chosen"].rfind(search_term)
assert search_term_idx != -1, f"Prompt and response does not contain '{search_term}'"
prompt = sample["chosen"][: search_term_idx + len(search_term)]
return {
"prompt": prompt,
"chosen": sample["chosen"][len(prompt) :],
"rejected": sample["rejected"][len(prompt) :],
}
def split_prompt_and_responses_rm(sample) -> Dict[str, str]:
return {
"prompt": sample["prompt"],
"chosen": sample["chosen"],
"rejected": sample["rejected"],
}
def split_prompt_and_responses_syn(sample) -> Dict[str, str]:
return {
"prompt": "Human: " + sample["prompt"] + "Assistant: ",
"chosen": sample["chosen"],
"rejected": sample["rejected"],
}
if 'hh-rlhf' in data_path:
return dataset.map(split_prompt_and_responses_hh)
if 'rm-static' in data_path:
return dataset.map(split_prompt_and_responses_rm)
if 'synthetic' in data_path:
return dataset.map(split_prompt_and_responses_syn)
def train():
parser = HfArgumentParser(Arguments)
args = parser.parse_args_into_dataclasses()[0]
model = transformers.AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
)
model_ref = transformers.AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
)
model_ref.eval()
for param in model_ref.parameters():
param.requires_grad = False
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
model_max_length=args.model_max_length,
padding_side="right",
add_eos_token=True,
use_fast=False,
legacy=False, # refer to the issue:https://github.com/huggingface/transformers/pull/24565
use_cache=False,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
train_dataset = get_data("train", args.data_path)
kwargs = dict(
model=model,
ref_model=model_ref,
args=args,
tokenizer=tokenizer,
train_dataset=train_dataset,
)
dpo_trainer = DPOTrainer(**kwargs)
dpo_trainer.train()
dpo_trainer.save_state()
def init():
set_seed(42)
warnings.filterwarnings("ignore")
logging.getLogger("DeepSpeed").setLevel(logging.ERROR)
if __name__ == "__main__":
init()
train()