-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvlstm.py
63 lines (50 loc) · 2.31 KB
/
convlstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# @title ConvLSTM
import torch
from torch import nn
import torch.nn.functional as f
from torch.autograd import Variable
class ConvLSTMCell(nn.Module):
"""
Generate a convolutional LSTM cell
"""
def __init__(self, input_size, hidden_size, norm = True):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden_size, 3, padding='same')
self.norm = norm
if self.norm:
self.norm_in = nn.InstanceNorm2d(hidden_size, affine=False, track_running_stats=True)
self.norm_remember = nn.InstanceNorm2d(hidden_size, affine=False, track_running_stats=True)
self.norm_out = nn.InstanceNorm2d(hidden_size, affine=False, track_running_stats=True)
self.norm_cell = nn.InstanceNorm2d(hidden_size, affine=False, track_running_stats=True)
self.norm_cy = nn.InstanceNorm2d(hidden_size, affine=False, track_running_stats=True)
def forward(self, input_, prev_state):
prev_hidden, prev_cell = prev_state
if prev_hidden.is_cuda == False and torch.cuda.is_available():
prev_hidden = prev_hidden.cuda()
# data size is [batch, channel, height, width]
stacked_inputs = torch.cat((input_, prev_hidden), 1)
gates = self.Gates(stacked_inputs)
# chunk across channel dimension
in_gate, remember_gate, out_gate, cell_gate = gates.chunk(4, 1)
if self.norm:
# Apply instance normalization
in_gate = self.norm_in(in_gate)
remember_gate = self.norm_remember(remember_gate)
out_gate = self.norm_out(out_gate)
cell_gate = self.norm_cell(cell_gate)
# apply sigmoid non linearity
in_gate = f.sigmoid(in_gate)
remember_gate = f.sigmoid(remember_gate)
out_gate = f.sigmoid(out_gate)
# apply tanh non linearity
cell_gate = f.tanh(cell_gate)
if prev_cell.is_cuda == False and torch.cuda.is_available():
prev_cell = prev_cell.cuda()
# compute current cell and hidden state
cell = (remember_gate * prev_cell) + (in_gate * cell_gate)
if self.norm:
cell = self.norm_cy(cell)
hidden = out_gate * f.tanh(cell)
return hidden, cell