Skip to content

Latest commit

 

History

History
29 lines (21 loc) · 1.43 KB

README.md

File metadata and controls

29 lines (21 loc) · 1.43 KB

Training examples

You can load the datasets in a unified way for training the models.

Requirements

Please, first install the additional requirements listed in ./requirements.txt.

Fine-tuning using transformers library

finetuning_transformers.py is an example of fine-tuning a seq2seq model and running inference using transformers library. It can be run from the command line, e.g. :

python examples/finetuning_transformers.py -d e2e

Parameters:

  • --dataset or -d - name of the dataset (listed in loaders.DATASET_CLASSES).
  • --base-model or -m - HF name of the base model to fine-tune. Default: t5-small.
  • --epochs or -e - maximum number of epochs (patience of 5 is applied during training). Default: 30.
  • --batch-size or -b - batch size. Default: 16.
  • --ckpt-dir or -c - path to folder for storing checkpoints. Default: PROJECT_ROOT/checkpoints.
  • --model-dir or -m - path to folder for storing models and outputs. Default: PROJECT_ROOT/models.

Multi-tasking

The example multitasking.py is almost equivalent to finetuning_transformers.py (section above). The only parameter difference is:

  • --datasets or -d - names of the datasets (listed in loaders.DATASET_CLASSES) separated by comma, e.g. e2e,webnlg.

Dataset-specific task description is prepended to each input item before training.
In this example, custom linearization functions are implemented for E2E and WebNLG datasets.