-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetrics.py
275 lines (230 loc) · 10.9 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#
# Copyright 2016 The Regents of The University California
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import utils
MILLIS_PER_JIFFY = 10
BYTES_PER_SECTOR = 512
SECTORS_READ_KEY = "Sectors Read"
MILLIS_READING_KEY = "Millis Reading"
SECTORS_WRITTEN_KEY = "Sectors Written"
MILLIS_WRITING_KEY = "Millis Writing"
TOTAL_IO_MILLIS_KEY = "Millis Total"
# This is based on looking at one of the continuous monitors from
# a network-bound experiment running on the millennium cluster.
MILLENNIUM_MAX_NETWORK_GIGABITS_PER_S = 0.917
AWS_M24XLARGE_MAX_NETWORK_GIGABITS_PER_S = 0.7
# Value to use for disk throughput (in bytes per second) on AWS.
AWS_DISK_BYTES_PER_SECOND = 80 * 1e6
class CpuMetrics(object):
def __init__(
self,
elapsed_millis,
cpu_millis,
num_cores,
hdfs_deser_decomp_millis,
hdfs_ser_comp_millis):
self.elapsed_millis = elapsed_millis
self.cpu_millis = cpu_millis
self.num_cores = num_cores
self.hdfs_deser_decomp_millis = hdfs_deser_decomp_millis
self.hdfs_ser_comp_millis = hdfs_ser_comp_millis
self.__calculate_util()
def add_metrics(self, other_metrics):
self.elapsed_millis += other_metrics.elapsed_millis
self.cpu_millis += other_metrics.cpu_millis
self.hdfs_deser_decomp_millis += other_metrics.hdfs_deser_decomp_millis
self.hdfs_ser_comp_millis += other_metrics.hdfs_ser_comp_millis
self.__calculate_util()
def __calculate_util(self):
self.utilization = float(self.cpu_millis) / (self.elapsed_millis * self.num_cores)
def __repr__(self):
return (
"cpu metrics:\n" +
"\tutilization: {:.2f}%\n".format(self.utilization * 100) +
"\tHDFS deser/decomp , ser/comp: {:.2f} s , {:.2f} s\n".format(
float(self.hdfs_deser_decomp_millis) / 1000,
float(self.hdfs_ser_comp_millis) / 1000)
)
class NetworkMetrics(object):
""" Describes the network utilization on a particular executor during a period of time.
Currently, self.transmit_idle_millis is not accurate and often overestimates the time the
network spent idle (because the Java-level network scheduler was idle, but during that period,
it had passed data to the OS networking stack's buffers, so the network was still in use).
As a result, transmit_idle_millis should not be used.
"""
def __init__(self, elapsed_millis, transmit_idle_millis, bytes_transmitted):
self.elapsed_millis = elapsed_millis
self.transmit_idle_millis = transmit_idle_millis
self.transmit_active_millis = self.elapsed_millis - self.transmit_idle_millis
self.bytes_transmitted = bytes_transmitted
self.__calculate_util_and_throughput()
def add_metrics(self, other_metrics):
self.elapsed_millis += other_metrics.elapsed_millis
self.transmit_idle_millis += other_metrics.transmit_idle_millis
self.transmit_active_millis += other_metrics.transmit_active_millis
self.bytes_transmitted += other_metrics.bytes_transmitted
self.__calculate_util_and_throughput()
def __calculate_util_and_throughput(self):
self.transmit_utilization = float(self.transmit_active_millis) / self.elapsed_millis
self.effective_transmit_throughput_Bps = (
float(self.bytes_transmitted) / self.transmit_active_millis) * 1000
def __repr__(self):
return (
"network metrics:\n" +
"\tdata transmitted: {}\n".format(utils.bytes_to_string(self.bytes_transmitted)) +
"\ttransmit utilization: {:.2f}%\n".format(self.transmit_utilization * 100) +
"\teffective transmit throughput: {}/s ({}/s)\n".format(
utils.bits_to_string(self.effective_transmit_throughput_Bps * 8),
utils.bytes_to_string(self.effective_transmit_throughput_Bps))
)
class DiskMetrics(object):
def __init__(self, elapsed_millis, start_counters, end_counters):
self.elapsed_millis = elapsed_millis
self.bytes_read = BYTES_PER_SECTOR * (end_counters.get(SECTORS_READ_KEY, 0.) -
start_counters.get(SECTORS_READ_KEY, 0.))
# self.millis_reading and self.millis_writing are only updated when a disk access finishes
# (instead of incrementally as the access progresses), so they can be grossly inaccurate if
# disk accesses are not completely contained within the sampling window.
self.millis_reading = (end_counters.get(MILLIS_READING_KEY, 0.) -
start_counters.get(MILLIS_READING_KEY, 0.))
self.bytes_written = BYTES_PER_SECTOR * (end_counters.get(SECTORS_WRITTEN_KEY, 0.) -
start_counters.get(SECTORS_WRITTEN_KEY, 0.))
self.millis_writing = (end_counters.get(MILLIS_WRITING_KEY, 0.) -
start_counters.get(MILLIS_WRITING_KEY, 0.))
self.total_io_millis = (end_counters.get(TOTAL_IO_MILLIS_KEY, 0.) -
start_counters.get(TOTAL_IO_MILLIS_KEY, 0.))
def add_metrics(self, other_metrics):
self.elapsed_millis += other_metrics.elapsed_millis
self.bytes_read += other_metrics.bytes_read
self.millis_reading += other_metrics.millis_reading
self.bytes_written += other_metrics.bytes_written
self.millis_writing += other_metrics.millis_writing
self.total_io_millis += other_metrics.total_io_millis
def utilization(self):
return float(self.total_io_millis) / self.elapsed_millis
def effective_throughput_Bps(self):
if self.total_io_millis == 0:
return 0
else:
return (float(self.bytes_read + self.bytes_written) / self.total_io_millis) * 1000
def __repr__(self):
return (
"disk metrics:\n" +
"\tdata transferred (read,written): {} , {}\n".format(
utils.bytes_to_string(self.bytes_read), utils.bytes_to_string(self.bytes_written)) +
"\tutilization: {:.2f}%\n".format(self.utilization() * 100) +
"\teffective throughput: {}/s\n".format(utils.bytes_to_string(self.effective_throughput_Bps()))
)
class ExecutorResourceMetrics(object):
"""
Describes the end-to-end CPU, network, disk, and GC usage of a single executor during some time
period.
"""
def __init__(self, start_millis, end_millis, num_tasks, cpu_metrics, network_metrics,
disk_name_to_metrics, gc_millis):
self.start_millis = start_millis
self.end_millis = end_millis
self.elapsed_millis = self.end_millis - self.start_millis
self.num_tasks = num_tasks
self.cpu_metrics = cpu_metrics
self.network_metrics = network_metrics
self.disk_name_to_metrics = disk_name_to_metrics
self.gc_millis = gc_millis
def add_metrics(self, other_metrics):
self.elapsed_millis += other_metrics.elapsed_millis
self.num_tasks += other_metrics.num_tasks
self.cpu_metrics.add_metrics(other_metrics.cpu_metrics)
self.network_metrics.add_metrics(other_metrics.network_metrics)
for disk_name, disk_metrics in other_metrics.disk_name_to_metrics.iteritems():
self.disk_name_to_metrics[disk_name].add_metrics(disk_metrics)
self.gc_millis += other_metrics.gc_millis
@staticmethod
def get_resource_metrics_for_executor_tasks(tasks):
"""Creates an ExecutorResourceMetrics object for the provided tasks.
All of the tasks in `tasks` should have run on the same executor. Returns an
ExecutorResourceMetrics object describing the CPU, network, disk, and GC usage
during the time period from when the first task started running on the
executor until the last task finished on the executor.
"""
first_task_to_start = sorted(tasks, key=lambda task: task.start_time)[0]
last_task_to_finish = sorted(tasks, key=lambda task: task.finish_time)[-1]
start_millis = first_task_to_start.start_time
end_millis = last_task_to_finish.finish_time
elapsed_millis = end_millis - start_millis
cpu_millis = (last_task_to_finish.end_total_cpu_jiffies -
first_task_to_start.start_total_cpu_jiffies) * MILLIS_PER_JIFFY
cpu_metrics = CpuMetrics(
elapsed_millis=elapsed_millis,
cpu_millis=cpu_millis,
num_cores=8,
hdfs_deser_decomp_millis=sum([t.hdfs_deser_decomp_millis for t in tasks]),
hdfs_ser_comp_millis=sum([t.hdfs_ser_comp_millis for t in tasks])
)
transmit_idle_millis = (last_task_to_finish.end_network_transmit_idle_millis -
first_task_to_start.start_network_transmit_idle_millis)
bytes_transmitted = (
last_task_to_finish.network_utilization.end_counters["Transmitted Bytes"] -
first_task_to_start.network_utilization.start_counters["Transmitted Bytes"])
network_metrics = NetworkMetrics(
elapsed_millis=elapsed_millis,
transmit_idle_millis=transmit_idle_millis,
bytes_transmitted=bytes_transmitted)
disk_name_to_metrics = {}
for disk_name, disk_utilization in first_task_to_start.disk_utilization.iteritems():
disk_name_to_metrics[disk_name] = DiskMetrics(
elapsed_millis=elapsed_millis,
start_counters=first_task_to_start.disk_utilization[disk_name].start_counters,
end_counters=last_task_to_finish.disk_utilization[disk_name].end_counters,
)
gc_millis = last_task_to_finish.end_gc_millis - first_task_to_start.start_gc_millis
return ExecutorResourceMetrics(
start_millis=start_millis,
end_millis=end_millis,
num_tasks=len(tasks),
cpu_metrics=cpu_metrics,
network_metrics=network_metrics,
disk_name_to_metrics=disk_name_to_metrics,
gc_millis=gc_millis)
def __repr__(self):
return (
"time (start,elapsed,end): {} ms, {} ms, {} ms\n".format(
self.start_millis, self.elapsed_millis, self.end_millis) +
"num tasks: {}\n".format(self.num_tasks) +
str(self.cpu_metrics) +
str(self.network_metrics) +
"".join(["{} {}".format(disk_name, disk_metrics)
for disk_name, disk_metrics in self.disk_name_to_metrics.iteritems()]) +
"GC millis: {}\n".format(self.gc_millis)
)
class NetworkUtilization(object):
""" Holds network utilization metadata from while a particular task was running.
This information is parsed from an event log.
"""
def __init__(self, start_counters, end_counters, bytes_transmitted_ps, bytes_received_ps):
self.start_counters = start_counters
self.end_counters = end_counters
self.bytes_transmitted_ps = bytes_transmitted_ps
self.bytes_received_ps = bytes_received_ps
class DiskUtilization(object):
""" Holds disk utilization metadata from while a particular task was running.
This information is parsed from an event log.
"""
def __init__(self, start_counters, end_counters, utilization, read_throughput_Bps,
write_throughput_Bps):
self.start_counters = start_counters
self.end_counters = end_counters
self.utilization = utilization
self.read_throughput_Bps = read_throughput_Bps
self.write_throughput_Bps = write_throughput_Bps