-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_gan.py
executable file
·265 lines (233 loc) · 9.23 KB
/
test_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import argparse
from collections import defaultdict
import numpy as np
import torch
from rich.console import Console
from torch.distributions.utils import clamp_probs
from torch.utils.data import DataLoader, TensorDataset
from tqdm.auto import tqdm
import gans.utils as utils
from gans.coords import CoordBridge
from gans.datasets.kitti import KITTIRaw
from gans.metrics.cov_mmd_1nna import compute_cov_mmd_1nna
from gans.metrics.fpd_kpd import compute_frechet_distance, compute_squared_mmd
from gans.metrics.jsd import compute_jsd
from gans.metrics.pointnet import pretrained_pointnet
from gans.metrics.swd import compute_swd
from gans.models.builder import build_generator
from gans.models.ops.gumbel import GumbelSigmoid
from gans.sampling.fps import downsample_point_clouds
console = Console()
@torch.no_grad()
def preprocess(
rank,
ckpt_path,
batch_size_per_gpu,
random_seed,
latent_codes,
num_cpus,
num_gpus,
queue,
):
utils.init_random_seed(random_seed)
device = torch.device(rank)
num_workers = int((num_cpus + num_gpus - 1) / num_gpus)
gpu_info = torch.cuda.get_device_properties(rank)
console.log(
f"rank {rank}: {gpu_info.name} {gpu_info.total_memory / 1024**3:g} GB, {num_workers} workers"
)
# load checkpoint
ckpt = torch.load(ckpt_path, map_location="cpu")
cfg = ckpt["cfg"]
angle = ckpt["angle"].to(device)
# datasets
H, W = cfg.model.generator.synthesis_kwargs.resolution
dataset_kwargs = dict(
root=cfg.dataset.root,
shape=(H, W),
min_depth=cfg.dataset.min_depth,
max_depth=cfg.dataset.max_depth,
)
loader_kwargs = dict(
batch_size=batch_size_per_gpu,
num_workers=num_workers,
shuffle=False,
drop_last=False,
)
train_dataset = KITTIRaw(split="train", **dataset_kwargs)
train_sampler = np.array_split(np.arange(len(train_dataset)), num_gpus)[rank]
train_loader = DataLoader(train_dataset, sampler=train_sampler, **loader_kwargs)
test_dataset = KITTIRaw(split="test", **dataset_kwargs)
test_sampler = np.array_split(np.arange(len(test_dataset)), num_gpus)[rank]
test_loader = DataLoader(test_dataset, sampler=test_sampler, **loader_kwargs)
latent_dataset = TensorDataset(latent_codes)
latent_sampler = np.array_split(np.arange(len(latent_dataset)), num_gpus)[rank]
latent_loader = DataLoader(latent_dataset, sampler=latent_sampler, **loader_kwargs)
console.log(
f"rank {rank}: {len(train_sampler):,}/{len(train_dataset):,} (train), "
+ f"{len(test_sampler):,}/{len(test_dataset):,} (test), "
+ f"{len(latent_sampler):,}/{len(latent_dataset):,} (generation)"
)
# coordinate converter (i.e. depth to point cloud)
coord = CoordBridge(
num_ring=H,
num_points=W,
min_depth=cfg.dataset.min_depth,
max_depth=cfg.dataset.max_depth,
angle_file=f"data/coords/{cfg.dataset.name}.npy",
)
coord.to(device)
# generator
G = build_generator(cfg.model.generator)
G.load_state_dict(ckpt["G_ema"])
G.eval().to(device)
# deterministic gumbel sampling
uniform = clamp_probs(torch.rand(1, H, W, device=device))
noise = uniform.log() - (-uniform).log1p()
for m in G.modules():
if isinstance(m, GumbelSigmoid):
m.register_forward_hook(lambda _, i, o: ((i[0] + noise) > 0.0).float())
# feature extractor for point clouds
pointnet = pretrained_pointnet()
pointnet.eval().to(device)
def transform_reals(imgs, mask):
imgs, mask = imgs.to(device), mask.to(device)
imgs = coord.convert(imgs, "depth", "inv_depth_norm")
imgs = utils.sigmoid_to_tanh(imgs)
imgs = (
mask * imgs
+ (1 - mask) * cfg.model.generator.measurement_kwargs.raydrop_const
)
imgs = utils.tanh_to_sigmoid(imgs).clamp(0, 1)
points = coord.convert(imgs, "inv_depth_norm", "point_set")
points /= coord.max_depth
feats = pointnet(points.transpose(1, 2))
points = downsample_point_clouds(points, cfg.validation.num_points)
return imgs.cpu(), points.cpu(), feats.cpu()
def transform_fakes(imgs):
imgs = utils.tanh_to_sigmoid(imgs).clamp(0, 1)
points = coord.convert(imgs, "inv_depth_norm", "point_set")
points /= coord.max_depth
feats = pointnet(points.transpose(1, 2))
points = downsample_point_clouds(points, cfg.validation.num_points)
return imgs.cpu(), points.cpu(), feats.cpu()
summary = defaultdict(list)
desc = lambda msg: f"rank {rank}: {msg}"
tqdm_kwargs = dict(dynamic_ncols=True, position=rank, leave=False, unit="imgs")
# train set
with tqdm(total=len(train_sampler), desc=desc("train set"), **tqdm_kwargs) as pbar:
for item in train_loader:
imgs, points, feats = transform_reals(item["depth"], item["mask"])
summary["train-imgs"].append(imgs)
summary["train-points"].append(points)
summary["train-feats"].append(feats)
pbar.update(len(imgs))
# test set
with tqdm(total=len(test_sampler), desc=desc("test set"), **tqdm_kwargs) as pbar:
for item in test_loader:
imgs, points, feats = transform_reals(item["depth"], item["mask"])
summary["test-imgs"].append(imgs)
summary["test-points"].append(points)
summary["test-feats"].append(feats)
pbar.update(len(imgs))
# generation
with tqdm(total=len(latent_sampler), desc=desc("gen set"), **tqdm_kwargs) as pbar:
for (z,) in latent_loader:
imgs = G(z=z.to(device), angle=angle.repeat_interleave(len(z), dim=0))
imgs, points, feats = transform_fakes(imgs["image"])
summary["gen-imgs"].append(imgs)
summary["gen-points"].append(points)
summary["gen-feats"].append(feats)
pbar.update(len(imgs))
for set_name in summary.keys():
summary[set_name] = torch.cat(summary[set_name], dim=0)
queue.put((rank, summary))
def subsample(batch, n):
if len(batch) <= n:
return batch
else:
return batch[torch.linspace(0, len(batch), n + 1)[:-1].long()]
@torch.no_grad()
def evaluate(args):
console.log(args)
num_cpus = torch.multiprocessing.cpu_count()
num_gpus = torch.cuda.device_count()
manager = torch.multiprocessing.Manager()
queue = manager.Queue()
pretrained_pointnet() # dry run to download weights
utils.init_random_seed(args.random_seed)
latent_codes = torch.randn(args.num_samples, 512)
# prepare train, test, and generated data
torch.multiprocessing.spawn(
preprocess,
args=(
args.ckpt_path,
args.batch_size_per_gpu,
args.random_seed,
latent_codes,
num_cpus,
num_gpus,
queue,
),
nprocs=num_gpus,
)
# collect and sort queued data
summary = defaultdict(list)
while not queue.empty():
rank, summary_dict = queue.get()
for set_name, value in summary_dict.items():
summary[set_name].append((rank, value))
for set_name, tuple_list in summary.items():
value_list = [value for _, value in sorted(tuple_list, key=lambda x: x[0])]
summary[set_name] = torch.cat(value_list, dim=0)
# evaluate
device = torch.device("cuda")
scores = dict()
# as inverse depth images
if "swd" in args.metrics:
scores.update(
compute_swd(
img1=subsample(summary["gen-imgs"], 2048).to(device),
img2=subsample(summary["test-imgs"], 2048).to(device),
)
)
# as point clouds
if "jsd" in args.metrics:
scores["jsd"] = compute_jsd(
pcs_gen=subsample(summary["gen-points"], 2048).to(device) / 2,
pcs_ref=subsample(summary["test-points"], 2048).to(device) / 2,
)
# as point clouds (> 1h)
if "1nna" in args.metrics:
scores.update(
compute_cov_mmd_1nna(
pcs_gen=subsample(summary["gen-points"], 2048).to(device),
pcs_ref=subsample(summary["test-points"], 2048).to(device),
batch_size=256,
metrics=("emd",),
)
)
# as pointnet features
if "fpd" in args.metrics:
scores["fpd"] = compute_frechet_distance(
feats1=summary["gen-feats"].cpu().numpy(),
feats2=summary["train-feats"].cpu().numpy(),
)
# as pointnet features
if "kpd" in args.metrics:
scores["kpd"] = compute_squared_mmd(
feats1=summary["gen-feats"].cpu().numpy(),
feats2=summary["train-feats"].cpu().numpy(),
)
console.log(f"{scores=}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--batch_size_per_gpu", type=int, default=32)
parser.add_argument("--random_seed", type=int, default=0)
parser.add_argument("--num_samples", type=int, default=50_000)
parser.add_argument("--metrics", type=str, default="swd,jsd,1nna,fpd,kpd")
args = parser.parse_args()
args.metrics = args.metrics.replace(" ", "").split(",")
assert torch.cuda.is_available(), "no visible cuda devices"
evaluate(args)