-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpu-grad-01-199.out
85 lines (85 loc) · 6.49 KB
/
gpu-grad-01-199.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
ERROR: Unable to locate a modulefile for 'cuda/12.3'
/home/2024/kzhang69/.conda/envs/kbzh_env/lib/python3.12/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
warnings.warn(
/home/2024/kzhang69/.conda/envs/kbzh_env/lib/python3.12/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet101_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet101_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
Using downloaded and verified file: /home/2024/kzhang69/.medmnist/organamnist_128.npz
Using downloaded and verified file: /home/2024/kzhang69/.medmnist/organamnist_128.npz
Using downloaded and verified file: /home/2024/kzhang69/.medmnist/organamnist_128.npz
Training with FC layers configuration: [512, 256, 256, 128, 64]
=================================================
Config ([512, 256, 256, 128, 64],) - Epoch [1/70], Training Loss: 0.6220
Config ([512, 256, 256, 128, 64],) - Epoch [1/70], Validation Loss: 0.6310
Config ([512, 256, 256, 128, 64],) - Epoch [2/70], Training Loss: 0.2997
Config ([512, 256, 256, 128, 64],) - Epoch [2/70], Validation Loss: 0.2137
Config ([512, 256, 256, 128, 64],) - Epoch [3/70], Training Loss: 0.2302
Config ([512, 256, 256, 128, 64],) - Epoch [3/70], Validation Loss: 0.3336
Config ([512, 256, 256, 128, 64],) - Epoch [4/70], Training Loss: 0.2102
Config ([512, 256, 256, 128, 64],) - Epoch [4/70], Validation Loss: 0.2661
Config ([512, 256, 256, 128, 64],) - Epoch [5/70], Training Loss: 0.1735
Config ([512, 256, 256, 128, 64],) - Epoch [5/70], Validation Loss: 0.2791
Config ([512, 256, 256, 128, 64],) - Early stopping after 5 epochs.
=================================================
Training with FC layers configuration: [4096, 4096, 1000, 1000]
=================================================
Config ([4096, 4096, 1000, 1000],) - Epoch [1/70], Training Loss: 0.5733
Config ([4096, 4096, 1000, 1000],) - Epoch [1/70], Validation Loss: 0.4174
Config ([4096, 4096, 1000, 1000],) - Epoch [2/70], Training Loss: 0.3106
Config ([4096, 4096, 1000, 1000],) - Epoch [2/70], Validation Loss: 0.2735
Config ([4096, 4096, 1000, 1000],) - Epoch [3/70], Training Loss: 0.2595
Config ([4096, 4096, 1000, 1000],) - Epoch [3/70], Validation Loss: 0.2142
Config ([4096, 4096, 1000, 1000],) - Epoch [4/70], Training Loss: 0.2263
Config ([4096, 4096, 1000, 1000],) - Epoch [4/70], Validation Loss: 0.2493
Config ([4096, 4096, 1000, 1000],) - Epoch [5/70], Training Loss: 0.2110
Config ([4096, 4096, 1000, 1000],) - Epoch [5/70], Validation Loss: 0.2859
Config ([4096, 4096, 1000, 1000],) - Epoch [6/70], Training Loss: 0.2123
Config ([4096, 4096, 1000, 1000],) - Epoch [6/70], Validation Loss: 0.2058
Config ([4096, 4096, 1000, 1000],) - Epoch [7/70], Training Loss: 0.1729
Config ([4096, 4096, 1000, 1000],) - Epoch [7/70], Validation Loss: 0.2076
Config ([4096, 4096, 1000, 1000],) - Epoch [8/70], Training Loss: 0.1691
Config ([4096, 4096, 1000, 1000],) - Epoch [8/70], Validation Loss: 0.1929
Config ([4096, 4096, 1000, 1000],) - Epoch [9/70], Training Loss: 0.1779
Config ([4096, 4096, 1000, 1000],) - Epoch [9/70], Validation Loss: 0.2194
Config ([4096, 4096, 1000, 1000],) - Epoch [10/70], Training Loss: 0.1528
Config ([4096, 4096, 1000, 1000],) - Epoch [10/70], Validation Loss: 0.1806
Config ([4096, 4096, 1000, 1000],) - Epoch [11/70], Training Loss: 0.1599
Config ([4096, 4096, 1000, 1000],) - Epoch [11/70], Validation Loss: 0.3427
Config ([4096, 4096, 1000, 1000],) - Epoch [12/70], Training Loss: 0.1628
Config ([4096, 4096, 1000, 1000],) - Epoch [12/70], Validation Loss: 0.3897
Config ([4096, 4096, 1000, 1000],) - Epoch [13/70], Training Loss: 0.1339
Config ([4096, 4096, 1000, 1000],) - Epoch [13/70], Validation Loss: 0.3292
Config ([4096, 4096, 1000, 1000],) - Early stopping after 13 epochs.
=================================================
Training with FC layers configuration: [4096, 4096, 1000]
=================================================
Config ([4096, 4096, 1000],) - Epoch [1/70], Training Loss: 0.5080
Config ([4096, 4096, 1000],) - Epoch [1/70], Validation Loss: 0.2119
Config ([4096, 4096, 1000],) - Epoch [2/70], Training Loss: 0.2799
Config ([4096, 4096, 1000],) - Epoch [2/70], Validation Loss: 0.2496
Config ([4096, 4096, 1000],) - Epoch [3/70], Training Loss: 0.2247
Config ([4096, 4096, 1000],) - Epoch [3/70], Validation Loss: 0.2170
Config ([4096, 4096, 1000],) - Epoch [4/70], Training Loss: 0.2029
Config ([4096, 4096, 1000],) - Epoch [4/70], Validation Loss: 0.2555
Config ([4096, 4096, 1000],) - Early stopping after 4 epochs.
=================================================
Training with FC layers configuration: [2048, 1024, 2014, 512, 512, 256, 256]
=================================================
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [1/70], Training Loss: 1.0557
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [1/70], Validation Loss: 0.6051
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [2/70], Training Loss: 0.4740
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [2/70], Validation Loss: 0.3894
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [3/70], Training Loss: 0.3737
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [3/70], Validation Loss: 0.5521
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [4/70], Training Loss: 0.3218
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [4/70], Validation Loss: 0.2866
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [5/70], Training Loss: 0.3053
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [5/70], Validation Loss: 0.2039
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [6/70], Training Loss: 0.2504
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [6/70], Validation Loss: 0.2808
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [7/70], Training Loss: 0.2415
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [7/70], Validation Loss: 0.2342
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [8/70], Training Loss: 0.2339
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Epoch [8/70], Validation Loss: 0.2942
Config ([2048, 1024, 2014, 512, 512, 256, 256],) - Early stopping after 8 epochs.
=================================================
Best Model Parameters: ([4096, 4096, 1000, 1000],) with Validation Loss: 0.1806