-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_graph_generator.py
943 lines (731 loc) · 41.1 KB
/
train_graph_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import torch_geometric
import torch
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (16384, rlimit[1]))
import torch_scatter
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from copy import deepcopy
import networkx as nx
import random
from tqdm import tqdm
import rdkit
import rdkit.Chem
import rdkit.Chem.AllChem
import rdkit.Chem.rdMolTransforms
from rdkit.Chem import rdMolTransforms
import rdkit.Chem.rdMolAlign
from rdkit.Geometry import Point3D
import rdkit.Chem.rdShapeHelpers
from rdkit import Chem, RDConfig
from rdkit.Chem import AllChem, rdMolAlign
import shutil
import torch.nn as nn
import torch.nn.functional as F
from utils.general_utils import *
from utils.graph_generator_datasets_and_loaders import *
from models.models import *
import collections
from collections.abc import Mapping, Sequence
from typing import List, Optional, Union
import torch.utils.data
from torch.utils.data.dataloader import default_collate
from torch_geometric.data import Batch, Dataset
from torch_geometric.data.data import BaseData
import gc
use_cuda = True
device = torch.device("cuda" if (torch.cuda.is_available() & use_cuda) else "cpu")
save = True
use_artificial_mols = True
mix_node_inv_to_equi = True
mix_shape_to_nodes = True
ablate_HvarCat = False
variational = False # for Z_inv or Z_equi
variational_mode = 'inv' # both, equi, or inv
variational_GNN = True # for GNN-encoded atom embeddings
variational_GNN_mol = False
cosine_penalty = 0.0
predict_pairwise_properties = False # tanimoto similarity
pairwise_property_factor = 1.0
predict_mol_property = False # specified to be QED in dataset
mol_property_factor = 1.0
shape_penalties = True
shape_penalty_factor = 10.0 if (shape_penalties == True) else 0.0
stop_shape_penalty = 10.0 # 0.0 no penalties
beta_schedule = np.concatenate((np.logspace(-5, -1, 100), np.ones(400)*1e-1))
beta_interval = 10000 # update beta every 10000 iterations (batches)
name = 'training_graph_generator'
PATH = 'results_' + name + '/'
output_file = PATH + name
# change these to load a checkpoint model
model_state = ''
learning_rate_state = None
iteration = 1
beta_iteration = 0
beta = float(beta_schedule[beta_iteration]) if ((variational == True) | (variational_GNN == True) | (variational_GNN_mol == True)) else None
# Validate only?
validate_only = False
# Data Augmentation
dihedral_var = 15.0
xyz_var = 0.0
randomize_focal_dihedral = True
# HYPERPARAMETERS
ablateEqui = False # switch to True to ablate equivariance
input_nf = 45
edges_in_d = 5
n_knn = 5
conv_dims = [32, 32, 64, 128]
num_components = 64
fragment_library_dim = 64
N_fragment_layers = 3
N_members = 125 - 1
EGNN_layer_dim = 64
N_EGNN_layers = 3
output_MLP_hidden_dim = 64
N_points = 5
append_noise = False
learned_noise = False
pooling_MLP = False
shared_encoders = False
subtract_latent_space = True
target_batch_size = 400
if learning_rate_state is not None:
lr = learning_rate_state
else:
lr = 0.00025
min_lr = 0.00025 / 50.
use_scheduler = True
gamma = 0.9
num_workers = 20
N_epochs = 100 * 20
# for memory management
chunks = 10
val_chunks = 10
seed = 0
random.seed(seed)
np.random.seed(seed = seed)
torch.manual_seed(seed)
if save and (validate_only == False):
if not os.path.exists(PATH):
os.makedirs(PATH)
os.makedirs(PATH + 'saved_models/')
shutil.copyfile('train_graph_generator.py', PATH + 'train_graph_generator.py')
def logger(text, file = output_file + '_training_log.txt'):
if save:
with open(file, 'a') as f:
f.write(text + '\n')
else:
print(text + '\n')
def val_logger(text, file = output_file + '_validation_log.txt'):
if save | validate_only:
with open(file, 'a') as f:
f.write(text + '\n')
else:
print(text + '\n')
logger('reading databases')
if (dihedral_var > 0.0) | (xyz_var > 0.0) | (randomize_focal_dihedral == True):
if use_artificial_mols:
filtered_database_mols = list(pd.read_pickle('data/MOSES2/MOSES2_training_val_filtered_database_artificial_mols.pkl').artificial_mols)
else:
filtered_database_mols = list(pd.read_pickle('data/MOSES2/MOSES2_training_val_filtered_database_mols.pkl').rdkit_mol_cistrans_stereo)
else:
filtered_database_mols = None
logger('reading fragment library')
AtomFragment_database = pd.read_pickle('data/MOSES2/MOSES2_training_val_AtomFragment_database.pkl')
AtomFragment_database = AtomFragment_database.iloc[1:].reset_index(drop = True) # removing stop token from AtomFragment_database!
AtomFragment_database_mols = list(AtomFragment_database.mol)
AtomFragment_database_smiles = list(AtomFragment_database.smiles)
fragment_library_atom_features = np.concatenate(AtomFragment_database['atom_features'], axis = 0).reshape((len(AtomFragment_database), -1))
logger('computing fragment shape penalties')
if shape_penalties:
volumes = np.zeros(len(AtomFragment_database))
for i in range(len(AtomFragment_database)):
m = deepcopy(AtomFragment_database.iloc[i].mol)
a = deepcopy(AtomFragment_database.iloc[i].atom_objects)
if m is not None:
volumes[i] = (rdkit.Chem.AllChem.ComputeMolVolume(m))
elif a is not None:
rdkit.Chem.AllChem.EmbedMolecule(a)
a = rdkit.Chem.RemoveHs(a)
volumes[i] = (rdkit.Chem.AllChem.ComputeMolVolume(a))
else:
volumes[i] = 0.0
volume_distances = torch.cdist(torch.as_tensor(volumes).unsqueeze(1), torch.as_tensor(volumes).unsqueeze(1)).float()
volume_distances = volume_distances.to(device)
else:
volume_distances = torch.zeros((len(AtomFragment_database), len(AtomFragment_database))).float()
logger('reading common data arrays')
# these are common to both training and validation splits.
edge_index_array = np.load('data/MOSES2/MOSES2_training_val_edge_index_array.npy')
edge_features_array = np.load('data/MOSES2/MOSES2_training_val_edge_features_array.npy')
node_features_array = np.load('data/MOSES2/MOSES2_training_val_node_features_array.npy')
if use_artificial_mols:
xyz_array = np.load('data/MOSES2/MOSES2_training_val_xyz_artificial_array.npy')
else:
xyz_array = np.load('data/MOSES2/MOSES2_training_val_xyz_array.npy')
atom_fragment_associations_array = np.load('data/MOSES2/MOSES2_training_val_atom_fragment_associations_array.npy')
atom_fragment_associations_array = atom_fragment_associations_array - 1
atoms_pointer = np.load('data/MOSES2/MOSES2_training_val_atoms_pointer.npy')
bonds_pointer = np.load('data/MOSES2/MOSES2_training_val_bonds_pointer.npy')
logger('reading training data arrays')
original_index = np.load('data/MOSES2/training_split_arrays/original_index.npy')
N_atoms_partial = np.load('data/MOSES2/training_split_arrays/N_atoms_partial.npy')
N_atoms = np.load('data/MOSES2/training_split_arrays/N_atoms.npy')
focal_attachment_index = np.load('data/MOSES2/training_split_arrays/focal_attachment_index.npy')
next_atom_index = np.load('data/MOSES2/training_split_arrays/next_atom_index.npy')
partial_graph_indices_sorted = np.load('data/MOSES2/training_split_arrays/partial_graph_indices_sorted.npy')
partial_graph_indices_sorted_pointer = np.load('data/MOSES2/training_split_arrays/partial_graph_indices_sorted_pointer.npy')
focal_indices_sorted = np.load('data/MOSES2/training_split_arrays/focal_indices_sorted.npy')
focal_indices_sorted_pointer = np.load('data/MOSES2/training_split_arrays/focal_indices_sorted_pointer.npy')
next_atom_fragment_indices_sorted = np.load('data/MOSES2/training_split_arrays/next_atom_fragment_indices_sorted.npy')
next_atom_fragment_indices_sorted_pointer = np.load('data/MOSES2/training_split_arrays/next_atom_fragment_indices_sorted_pointer.npy')
focal_attachment_index_ref_partial_array = np.load('data/MOSES2/training_split_arrays/focal_attachment_index_ref_partial_array.npy')
focal_attachment_point_label_prob_array = np.load('data/MOSES2/training_split_arrays/focal_attachment_point_label_prob_array.npy')
focal_attachment_point_label_prob_pointer = np.load('data/MOSES2/training_split_arrays/focal_attachment_point_label_prob_pointer.npy')
multi_hot_next_atom_fragment_attachment_points_array = np.load('data/MOSES2/training_split_arrays/multi_hot_next_atom_fragment_attachment_points_array.npy')
multi_hot_next_atom_fragment_attachment_points_pointer = np.load('data/MOSES2/training_split_arrays/multi_hot_next_atom_fragment_attachment_points_pointer.npy')
bond_type_class_index_label_array = np.load('data/MOSES2/training_split_arrays/bond_type_class_index_label_array.npy')
logger('reading validation data arrays')
val_original_index = np.load('data/MOSES2/validation_split_arrays/original_index.npy')
val_N_atoms_partial = np.load('data/MOSES2/validation_split_arrays/N_atoms_partial.npy')
val_N_atoms = np.load('data/MOSES2/validation_split_arrays/N_atoms.npy')
val_focal_attachment_index = np.load('data/MOSES2/validation_split_arrays/focal_attachment_index.npy')
val_next_atom_index = np.load('data/MOSES2/validation_split_arrays/next_atom_index.npy')
val_partial_graph_indices_sorted = np.load('data/MOSES2/validation_split_arrays/partial_graph_indices_sorted.npy')
val_partial_graph_indices_sorted_pointer = np.load('data/MOSES2/validation_split_arrays/partial_graph_indices_sorted_pointer.npy')
val_focal_indices_sorted = np.load('data/MOSES2/validation_split_arrays/focal_indices_sorted.npy')
val_focal_indices_sorted_pointer = np.load('data/MOSES2/validation_split_arrays/focal_indices_sorted_pointer.npy')
val_next_atom_fragment_indices_sorted = np.load('data/MOSES2/validation_split_arrays/next_atom_fragment_indices_sorted.npy')
val_next_atom_fragment_indices_sorted_pointer = np.load('data/MOSES2/validation_split_arrays/next_atom_fragment_indices_sorted_pointer.npy')
val_focal_attachment_index_ref_partial_array = np.load('data/MOSES2/validation_split_arrays/focal_attachment_index_ref_partial_array.npy')
val_focal_attachment_point_label_prob_array = np.load('data/MOSES2/validation_split_arrays/focal_attachment_point_label_prob_array.npy')
val_focal_attachment_point_label_prob_pointer = np.load('data/MOSES2/validation_split_arrays/focal_attachment_point_label_prob_pointer.npy')
val_multi_hot_next_atom_fragment_attachment_points_array = np.load('data/MOSES2/validation_split_arrays/multi_hot_next_atom_fragment_attachment_points_array.npy')
val_multi_hot_next_atom_fragment_attachment_points_pointer = np.load('data/MOSES2/validation_split_arrays/multi_hot_next_atom_fragment_attachment_points_pointer.npy')
val_bond_type_class_index_label_array = np.load('data/MOSES2/validation_split_arrays/bond_type_class_index_label_array.npy')
logger('initializing model')
model = Model_Point_Cloud_Switched(
input_nf = input_nf,
edges_in_d = edges_in_d,
n_knn = n_knn,
conv_dims = conv_dims,
num_components = num_components,
fragment_library_dim = fragment_library_dim,
N_fragment_layers = N_fragment_layers,
append_noise = append_noise,
N_members = N_members,
EGNN_layer_dim = EGNN_layer_dim,
N_EGNN_layers = N_EGNN_layers,
output_MLP_hidden_dim = output_MLP_hidden_dim,
pooling_MLP = pooling_MLP,
shared_encoders = shared_encoders,
subtract_latent_space = subtract_latent_space,
variational = variational,
variational_mode = variational_mode,
variational_GNN = variational_GNN,
variational_GNN_mol = variational_GNN_mol,
mix_node_inv_to_equi = mix_node_inv_to_equi,
mix_shape_to_nodes = mix_shape_to_nodes,
ablate_HvarCat = ablate_HvarCat,
predict_pairwise_properties = predict_pairwise_properties,
predict_mol_property = predict_mol_property,
ablateEqui = ablateEqui,
old_EGNN = False,
).float()
if (model.append_noise == True) and (learned_noise == False):
for p in model.Encoder.fragment_encoder.noise_embedding.parameters():
p.requires_grad = False
if model_state != '':
logger(f'loading model parameters from {model_state}')
model.load_state_dict(torch.load(model_state, map_location=next(model.parameters()).device), strict=True)
model.to(device)
logger(f'model has {sum([np.prod(p.size()) for p in filter(lambda p: p.requires_grad, model.parameters())])} parameters')
logger('creating datasets and dataloaders')
library_dataset = AtomFragmentLibrary(AtomFragment_database)
library_loader = torch_geometric.data.DataLoader(
library_dataset,
shuffle = False,
batch_size = len(library_dataset),
num_workers = 0,
)
fragment_batch = next(iter(library_loader))
N_fragment_library_nodes = fragment_batch.x.shape[0]
fragment_batch_batch = fragment_batch.batch
fragment_batch = fragment_batch.to(device)
sampler_df = pd.DataFrame()
sampler_df['N_atoms'] = N_atoms
sampler_df['N_atoms_partial'] = N_atoms_partial
train_sampler = VNNBatchSampler(sampler_df, target_batch_size, chunks = chunks)
train_dataset = FragmentGraphDataset_point_cloud(
filtered_database_mols,
original_index,
edge_index_array,
edge_features_array,
node_features_array,
xyz_array,
atom_fragment_associations_array,
atoms_pointer,
bonds_pointer,
focal_attachment_index,
next_atom_index,
partial_graph_indices_sorted,
partial_graph_indices_sorted_pointer,
focal_indices_sorted,
focal_indices_sorted_pointer,
next_atom_fragment_indices_sorted,
next_atom_fragment_indices_sorted_pointer,
focal_attachment_index_ref_partial_array,
focal_attachment_point_label_prob_array,
focal_attachment_point_label_prob_pointer,
multi_hot_next_atom_fragment_attachment_points_array,
multi_hot_next_atom_fragment_attachment_points_pointer,
bond_type_class_index_label_array,
N_points = N_points,
dihedral_var = dihedral_var,
xyz_var = xyz_var,
randomize_focal_dihedral = randomize_focal_dihedral,
)
train_loader = DataLoader(
train_dataset,
batch_sampler = train_sampler,
num_workers = num_workers,
persistent_workers = False,
follow_batch = ['x', 'x_subgraph'],
N_fragment_library_nodes = N_fragment_library_nodes,
fragment_batch_batch = fragment_batch_batch,
)
val_sampler_df = pd.DataFrame()
val_sampler_df['N_atoms'] = val_N_atoms
val_sampler_df['N_atoms_partial'] = val_N_atoms_partial
val_sampler = VNNBatchSampler(val_sampler_df, target_batch_size, chunks = val_chunks)
val_dataset = FragmentGraphDataset_point_cloud(
filtered_database_mols,
val_original_index,
edge_index_array,
edge_features_array,
node_features_array,
xyz_array,
atom_fragment_associations_array,
atoms_pointer,
bonds_pointer,
val_focal_attachment_index,
val_next_atom_index,
val_partial_graph_indices_sorted,
val_partial_graph_indices_sorted_pointer,
val_focal_indices_sorted,
val_focal_indices_sorted_pointer,
val_next_atom_fragment_indices_sorted,
val_next_atom_fragment_indices_sorted_pointer,
val_focal_attachment_index_ref_partial_array,
val_focal_attachment_point_label_prob_array,
val_focal_attachment_point_label_prob_pointer,
val_multi_hot_next_atom_fragment_attachment_points_array,
val_multi_hot_next_atom_fragment_attachment_points_pointer,
val_bond_type_class_index_label_array,
N_points = N_points,
dihedral_var = dihedral_var,
xyz_var = xyz_var,
randomize_focal_dihedral = randomize_focal_dihedral,
)
val_loader = DataLoader(
val_dataset,
batch_sampler = val_sampler,
num_workers = num_workers,
persistent_workers = False,
follow_batch = ['x', 'x_subgraph'],
N_fragment_library_nodes = N_fragment_library_nodes,
fragment_batch_batch = fragment_batch_batch,
)
def loop(model, optimizer, batch_data, training = True, device = torch.device('cpu'), shape_penalty_factor = 0.0, volume_distances = None, stop_shape_penalty = 0.0, variational = False, variational_mode = 'both', variational_GNN = False, variational_GNN_mol = False, cosine_penalty = 0.0, beta = 0.0, predict_pairwise_properties = False, pairwise_property_factor = 1.0, predict_mol_property = False, mol_property_factor = 1.0):
batch, batch_dict = deepcopy(batch_data)
batch_size = batch_dict['batch_size']
if batch_size == 1:
return 1, torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), 0, 0, 0, 0, torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), 0, 0, torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), torch.tensor(float('NaN')).item(), 0, torch.tensor(float('NaN'))
if training:
optimizer.zero_grad()
focal_index_rel_partial = batch_dict['focal_index_rel_partial']
focal_indices_batch = batch_dict['focal_indices_batch']
stop_mask = batch_dict['stop_mask']
stop_focal_mask = batch_dict['stop_focal_mask']
all_stop = batch_dict['all_stop']
next_atomFragment_attachment_loss_mask_size = batch_dict['next_atomFragment_attachment_loss_mask_size']
focal_attachment_loss_mask = batch_dict['focal_attachment_loss_mask']
focal_attachment_loss_mask_size = batch_dict['focal_attachment_loss_mask_size']
select_multi_losses = batch_dict['select_multi_losses']
mask_select_multi = batch_dict['mask_select_multi']
focal_attachment_label_prob_masked = batch_dict['focal_attachment_label_prob_masked']
masked_focal_batch_index_reindexed = batch_dict['masked_focal_batch_index_reindexed']
focal_attachment_index_rel_partial = batch_dict['focal_attachment_index_rel_partial']
next_atom_attachment_indices = batch_dict['next_atom_attachment_indices']
masked_next_atom_attachment_batch_index_reindexed = batch_dict['masked_next_atom_attachment_batch_index_reindexed']
masked_multihot_next_attachments = batch_dict['masked_multihot_next_attachments']
masked_multihot_next_attachments_label_prob = batch_dict['masked_multihot_next_attachments_label_prob']
bond_type_mask = batch_dict['bond_type_mask']
pairwise_indices_1_select = batch_dict['pairwise_indices_1_select']
pairwise_indices_2_select = batch_dict['pairwise_indices_2_select']
pairwise_targets = batch_dict['pairwise_targets']
pairwise_indices_1_select = pairwise_indices_1_select.to(device)
pairwise_indices_2_select = pairwise_indices_2_select.to(device)
pairwise_targets = pairwise_targets.to(device)
batch = batch.to(device)
mol_prop_targets = batch.mol_prop.float()
focal_index_rel_partial = focal_index_rel_partial.to(device)
focal_indices_batch = focal_indices_batch.to(device)
stop_mask = stop_mask.to(device)
stop_focal_mask = stop_focal_mask.to(device)
if not all_stop:
focal_attachment_loss_mask = focal_attachment_loss_mask.to(device)
focal_attachment_label_prob_masked = focal_attachment_label_prob_masked.to(device)
masked_focal_batch_index_reindexed = masked_focal_batch_index_reindexed.to(device)
focal_attachment_index_rel_partial = focal_attachment_index_rel_partial.to(device)
next_atom_attachment_indices = next_atom_attachment_indices.to(device)
masked_next_atom_attachment_batch_index_reindexed = masked_next_atom_attachment_batch_index_reindexed.to(device)
masked_multihot_next_attachments = masked_multihot_next_attachments.to(device)
bond_type_mask = bond_type_mask.to(device) # to(device) might not be needed here...
if next_atomFragment_attachment_loss_mask_size > 0:
select_multi_losses = select_multi_losses.to(device)
mask_select_multi = mask_select_multi.to(device)
args = (
batch_size,
batch.x.float(),
batch.edge_index,
batch.edge_attr.float(),
batch.pos.float(),
batch.cloud.float(),
batch.cloud_indices,
batch.atom_fragment_associations,
batch.x_subgraph.float(),
batch.edge_index_subgraph,
batch.edge_attr_subgraph.float(),
batch.pos_subgraph.float(),
batch.cloud_subgraph.float(),
batch.cloud_indices_subgraph,
batch.atom_fragment_associations_subgraph,
focal_index_rel_partial,
focal_indices_batch,
fragment_batch,
batch.next_atom_type_library_idx,
stop_mask,
stop_focal_mask,
masked_focal_batch_index_reindexed,
focal_attachment_index_rel_partial,
next_atom_attachment_indices,
masked_next_atom_attachment_batch_index_reindexed,
masked_multihot_next_attachments,
)
if not training:
with torch.no_grad():
out = model(*args,
all_stop = all_stop,
pairwise_indices_1_select = pairwise_indices_1_select,
pairwise_indices_2_select = pairwise_indices_2_select,
device = device)
else:
out = model(*args,
all_stop = all_stop,
pairwise_indices_1_select = pairwise_indices_1_select,
pairwise_indices_2_select = pairwise_indices_2_select,
device = device)
# predicting stop tokens
stop_loss = stop_BCE(torch.sigmoid(out[0].squeeze()), stop_mask.type(torch.float))
stop_accuracy = torch.mean((torch.round(torch.sigmoid(out[0].squeeze())) == stop_mask.type(torch.float)).type(torch.float))
backprop_loss = stop_loss
# stop shape loss
if not all_stop:
N_future_atoms = batch.N_future_atoms.squeeze()
stop_shape_loss = torch.mean((1.0 - torch.sigmoid(out[0].squeeze()[stop_mask])) * batch.N_future_atoms.squeeze()[stop_mask])
backprop_loss = backprop_loss + stop_shape_loss * stop_shape_penalty
else:
stop_shape_loss = torch.tensor(float('NaN')) # Nan
if variational:
Z_equi_mean, Z_equi_std, Z_inv_mean, Z_inv_std = out[5], out[6], out[7], out[8]
if (variational_mode == 'both') | (variational_mode == 'equi'):
KL_unreduced_equi = 0.5 * (torch.sum(Z_equi_mean.reshape(batch_size, -1)**2.0, dim = 1) + torch.sum(Z_equi_std.reshape(batch_size, -1)**2.0, dim = 1) - torch.sum(torch.log(Z_equi_std.reshape(batch_size, -1)**2.0) + 1.0, dim = 1))
if (variational_mode == 'both') | (variational_mode == 'inv'):
KL_unreduced_inv = 0.5 * (torch.sum(Z_inv_mean**2.0, dim = 1) + torch.sum(Z_inv_std**2.0, dim = 1) - torch.sum(torch.log(Z_inv_std**2.0) + 1.0, dim = 1))
if variational_mode == 'both':
KL_loss = torch.mean(KL_unreduced_equi) + torch.mean(KL_unreduced_inv)
elif variational_mode == 'inv':
KL_loss = torch.mean(KL_unreduced_inv)
elif variational_mode == 'equi':
KL_loss = torch.mean(KL_unreduced_equi)
backprop_loss = backprop_loss + beta * KL_loss
cosine_loss = torch.tensor(float('NaN')) # Nan
elif variational_GNN: # since batches contain molecules with same # of atoms, we don't need to do any additional averaging
h_mean, h_std = out[9], out[10]
KL_unreduced = 0.5 * (torch.sum(h_mean**2.0, dim = 1) + torch.sum(h_std**2.0, dim = 1) - torch.sum(torch.log(h_std**2.0) + 1.0, dim = 1))
KL_loss = torch.mean(KL_unreduced)
backprop_loss = backprop_loss + beta * KL_loss
cosine_loss = torch.tensor(float('NaN')) # Nan
elif variational_GNN_mol:
h_mean, h_std = out[9], out[10]
KL_unreduced = 0.5 * (torch.sum(h_mean**2.0, dim = 1) + torch.sum(h_std**2.0, dim = 1) - torch.sum(torch.log(h_std**2.0) + 1.0, dim = 1))
KL_loss = torch.mean(KL_unreduced)
backprop_loss = backprop_loss + beta * KL_loss
h_reshaped_gnn, h_predicted_reshaped = out[11], out[12]
cosine_loss = torch.mean(1. - torch.nn.functional.cosine_similarity(h_reshaped_gnn, h_predicted_reshaped, dim=1))
backprop_loss = backprop_loss + cosine_penalty * cosine_loss
else: # no variational components in encoder
KL_loss = torch.tensor(float('NaN')) # Nan
cosine_loss = torch.tensor(float('NaN')) # Nan
if predict_pairwise_properties:
pairwise_properties_out = out[14]
pairwise_properties_out_sigmoid = torch.sigmoid(pairwise_properties_out.squeeze())
pairwise_property_loss = torch.mean(torch.square(pairwise_targets - pairwise_properties_out_sigmoid))
N_pairwise_targets = pairwise_targets.shape[0]
backprop_loss = backprop_loss + pairwise_property_factor*pairwise_property_loss
else:
pairwise_property_loss = torch.tensor(float('NaN')) # Nan
N_pairwise_targets = 0
if predict_mol_property:
mol_prop_out = out[15]
mol_prop_out_sigmoid = torch.sigmoid(mol_prop_out.squeeze())
mol_prop_loss = torch.mean(torch.square(mol_prop_targets - mol_prop_out_sigmoid))
backprop_loss = backprop_loss + mol_property_factor * mol_prop_loss
else:
mol_prop_loss = torch.tensor(float('NaN')) # Nan
if not all_stop:
# predicting next atom/fragment types (only for non-stop tokens)
next_atomFragment_loss = next_atomFragment_cross_entropy(out[1], batch.next_atom_type_library_idx[stop_mask])
next_atomFragment_accuracy = torch.mean((out[1].softmax(dim = 1).argmax(dim = 1) == batch.next_atom_type_library_idx[stop_mask]).type(torch.float))
backprop_loss = backprop_loss + next_atomFragment_loss
# adding in shape penalty
if shape_penalty_factor > 0.0:
shape_loss = torch.mean(out[1].softmax(dim = 1) * volume_distances[batch.next_atom_type_library_idx[stop_mask]])
backprop_loss = backprop_loss + shape_penalty_factor*shape_loss
else:
shape_loss = torch.tensor(float('NaN')) # Nan
# predicing focal fragment attachment point
focal_attachment_losses = torch_scatter.scatter_sum(-torch.log(out[2] + 1e-8)*focal_attachment_label_prob_masked, masked_focal_batch_index_reindexed, dim = 0)
if focal_attachment_loss_mask_size > 0:
focal_attachment_loss = torch.mean(focal_attachment_losses[focal_attachment_loss_mask]) # selecting only those losses from actual fragments (I think)
backprop_loss = backprop_loss + focal_attachment_loss
else:
focal_attachment_loss = torch.tensor(float('NaN'))
# predicting next atom/fragment attachments with graph-equivalency and masking non-fragments
if next_atomFragment_attachment_loss_mask_size > 0:
binary_next_attachment_point_losses = torch_scatter.scatter_add(out[3][select_multi_losses], mask_select_multi)
next_atomFragment_attachment_loss = -torch.mean(torch.log(binary_next_attachment_point_losses + 1e-8))
backprop_loss = backprop_loss + next_atomFragment_attachment_loss
else:
next_atomFragment_attachment_loss = torch.tensor(float('NaN'))
# predicting bond types of attachment points
bond_loss = bond_cross_entropy(out[4], bond_type_mask)
backprop_loss = backprop_loss + bond_loss
else:
next_atomFragment_loss = torch.tensor(float('NaN')) # Nan
focal_attachment_loss = torch.tensor(float('NaN')) # Nan
next_atomFragment_attachment_loss = torch.tensor(float('NaN')) # Nan
bond_loss = torch.tensor(float('NaN')) # Nan
next_atomFragment_accuracy = torch.tensor(float('NaN')) # Nan
focal_attachment_loss_mask_size = 0
next_atomFragment_attachment_loss_mask_size = 0
shape_loss = torch.tensor(float('NaN')) # Nan
if training:
backprop_loss.backward()
optimizer.step()
return batch_size, stop_loss.item(), next_atomFragment_loss.item(), focal_attachment_loss.item(), next_atomFragment_attachment_loss.item(), bond_loss.item(), sum(stop_mask.cpu().numpy()), focal_attachment_loss_mask_size, next_atomFragment_attachment_loss_mask_size, sum(stop_mask.cpu().numpy()), stop_accuracy.item(), next_atomFragment_accuracy.item(), batch.x.shape[0] // batch_size, batch.x_subgraph.shape[0] // batch_size, shape_loss.item(), KL_loss.item(), stop_shape_loss.item(), cosine_loss.item(), pairwise_property_loss.item(), N_pairwise_targets, mol_prop_loss.item()
logger('starting to train')
logger(f'train loader has approx. {len(train_loader)} batches')
val_logger(f'val loader has approx. {len(val_loader)} batches')
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr = lr)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma) if use_scheduler else None
stop_BCE = torch.nn.BCELoss()
next_atomFragment_cross_entropy = torch.nn.CrossEntropyLoss()
bond_cross_entropy = torch.nn.CrossEntropyLoss()
train_stop_loss = []
train_next_loss = []
train_focal_loss = []
train_attachment_loss = []
train_bond_loss = []
train_epoch_number = []
train_shape_loss = []
train_KL_loss = []
train_stop_shape_loss = []
train_cosine_loss = []
train_pairwise_property_loss = []
train_mol_prop_loss = []
val_stop_loss = []
val_next_loss = []
val_focal_loss = []
val_attachment_loss = []
val_bond_loss = []
val_epoch_number = []
val_stop_accuracy = []
val_next_accuracy = []
#val_mol_size = []
#val_subgraph_size = []
val_shape_loss = []
val_KL_loss = []
val_stop_shape_loss = []
val_cosine_loss = []
val_pairwise_property_loss = []
val_mol_prop_loss = []
interval = 5000
save_interval = 50000
scheduler_interval = 50000
validation_interval = 25000
stop_losses = []
next_losses = []
focal_losses = []
attachment_losses = []
bond_losses = []
batch_sizes = []
N_next_losses = []
N_focal_losses = []
N_attachment_losses = []
N_bond_losses = []
shape_losses = []
KL_losses = []
stop_shape_losses = []
cosine_losses = []
pairwise_property_losses = []
N_pairwise_targets_sizes = []
mol_prop_losses = []
logger(f"starting training with learning rate: {optimizer.param_groups[0]['lr']}")
for epoch in range(1, 1 + N_epochs):
if validate_only == False:
validate = False
training = True
model.train()
for b, batch in enumerate(train_loader):
batch_size, stopToken_loss, next_loss, focal_loss, attachment_loss, bond_loss, N_next_loss, N_focal_loss, N_attachment_loss, N_bond_loss, _, _, _, _, shape_loss, KL_loss, stop_shape_loss, cosine_loss, pairwise_property_loss, N_pairwise_targets, mol_prop_loss = loop(model, optimizer, batch, training = training, device = device, shape_penalty_factor = shape_penalty_factor, volume_distances = volume_distances, stop_shape_penalty = stop_shape_penalty, variational = variational, variational_mode = variational_mode, variational_GNN = variational_GNN, variational_GNN_mol = variational_GNN_mol, cosine_penalty = cosine_penalty, beta = beta, predict_pairwise_properties = predict_pairwise_properties, pairwise_property_factor = pairwise_property_factor, predict_mol_property = predict_mol_property, mol_property_factor = mol_property_factor)
if iteration == 0:
logger(f'stopToken_loss: {stopToken_loss}, next_loss: {next_loss}, focal_loss: {focal_loss}, attachment_loss: {attachment_loss}, bond_loss: {bond_loss}, shape_loss: {shape_loss}, KL_loss: {KL_loss}, stop_shape_loss: {stop_shape_loss}, pairwise_property_loss: {pairwise_property_loss}, mol_prop_loss: {mol_prop_loss}')
if (iteration % 1000) == 0:
gc.collect()
batch_sizes.append(batch_size)
stop_losses.append(stopToken_loss)
next_losses.append(next_loss)
focal_losses.append(focal_loss)
attachment_losses.append(attachment_loss)
bond_losses.append(bond_loss)
N_next_losses.append(N_next_loss)
N_focal_losses.append(N_focal_loss)
N_attachment_losses.append(N_attachment_loss)
N_bond_losses.append(N_bond_loss)
shape_losses.append(shape_loss)
KL_losses.append(KL_loss)
stop_shape_losses.append(stop_shape_loss)
cosine_losses.append(cosine_loss)
pairwise_property_losses.append(pairwise_property_loss)
N_pairwise_targets_sizes.append(N_pairwise_targets)
mol_prop_losses.append(mol_prop_loss)
if (iteration % interval) == 0:
train_stop_loss.append(float(np.nansum(np.array(stop_losses) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_next_loss.append(float(np.nansum(np.array(next_losses) * np.array(N_next_losses))) / sum(np.array(N_next_losses)))
train_focal_loss.append(float(np.nansum(np.array(focal_losses) * np.array(N_focal_losses))) / sum(np.array(N_focal_losses)))
train_attachment_loss.append(float(np.nansum(np.array(attachment_losses) * np.array(N_attachment_losses))) / sum(np.array(N_attachment_losses)))
train_bond_loss.append(float(np.nansum(np.array(bond_losses) * np.array(N_bond_losses))) / sum(np.array(N_bond_losses)))
train_epoch_number.append(epoch)
train_shape_loss.append(float(np.nansum(np.array(shape_losses) * np.array(N_next_losses))) / sum(np.array(N_next_losses)))
train_KL_loss.append(float(np.nansum(np.array(KL_losses) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_stop_shape_loss.append(float(np.nansum(np.array(stop_shape_losses) * np.array(N_next_losses))) / sum(np.array(N_next_losses)))
train_cosine_loss.append(float(np.nansum(np.array(cosine_losses) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
train_pairwise_property_loss.append(float(np.nansum(np.array(pairwise_property_losses) * np.array(N_pairwise_targets_sizes))) / sum(np.array(N_pairwise_targets_sizes)))
train_mol_prop_loss.append(float(np.nansum(np.array(mol_prop_losses) * np.array(batch_sizes))) / sum(np.array(batch_sizes)))
logger(f'iteration: {iteration}, epoch: {epoch}, batch: {b}, stop_loss: {train_stop_loss[-1]}, next_loss: {train_next_loss[-1]}, focal_loss: {train_focal_loss[-1]}, attachment_loss: {train_attachment_loss[-1]}, bond_loss: {train_bond_loss[-1]}, shape_loss: {train_shape_loss[-1]}, KL loss: {train_KL_loss[-1]}, stop_shape_loss: {train_stop_shape_loss[-1]}, cosine_loss: {train_cosine_loss[-1]}, pairwise_property_loss: {train_pairwise_property_loss[-1]}, mol_prop_loss: {train_mol_prop_loss[-1]}' )
batch_sizes = []
stop_losses = []
next_losses = []
focal_losses = []
attachment_losses = []
bond_losses = []
N_next_losses = []
N_focal_losses = []
N_attachment_losses = []
N_bond_losses = []
shape_losses = []
KL_losses = []
stop_shape_losses = []
cosine_losses = []
pairwise_property_losses = []
N_pairwise_targets_sizes = []
mol_prop_losses = []
if (save) & ((iteration % save_interval) == 0):
logger(f'saving model {int(iteration / save_interval)}...')
torch.save(model.state_dict(), PATH + f'saved_models/model_{int(iteration / save_interval)}.pt')
if (use_scheduler == True) & (iteration % scheduler_interval == 0):
scheduler.step()
logger(f"learning rate reduced to: {optimizer.param_groups[0]['lr']}")
if optimizer.param_groups[0]['lr'] <= min_lr:
use_scheduler = False
if ((variational == True) | (variational_GNN == True) | (variational_GNN_mol == True)) & (iteration % beta_interval == 0):
beta_iteration += 1
beta = float(beta_schedule[beta_iteration])
logger(f"beta increased to: {beta}. New beta iteration: {beta_iteration}")
iteration += 1
if (iteration - 1) % validation_interval == 0:
validate = True # validate model after epoch chunk finishes
else:
validate = True
if validate == False:
continue
logger(f'validating model at iteration: {iteration}')
val_stop_losses = []
val_next_losses = []
val_focal_losses = []
val_attachment_losses = []
val_bond_losses = []
val_batch_sizes = []
val_N_next_losses = []
val_N_focal_losses = []
val_N_attachment_losses = []
val_N_bond_losses = []
val_stop_accuracies = []
val_next_accuracies = []
#val_mol_sizes = []
#val_subgraph_sizes = []
val_shape_losses = []
val_KL_losses = []
val_stop_shape_losses = []
val_cosine_losses = []
val_pairwise_property_losses = []
val_N_pairwise_targets_sizes = []
val_mol_prop_losses = []
training = False
model.eval()
for b, batch in enumerate(val_loader):
batch_size, stopToken_loss, next_loss, focal_loss, attachment_loss, bond_loss, N_next_loss, N_focal_loss, N_attachment_loss, N_bond_loss, stop_accuracy, next_atomFragment_accuracy, mol_size, subgraph_size, shape_loss, KL_loss, stop_shape_loss, cosine_loss, pairwise_property_loss, N_pairwise_targets, mol_prop_loss = loop(model, optimizer, batch, training = training, device = device, shape_penalty_factor = shape_penalty_factor, volume_distances = volume_distances, stop_shape_penalty = stop_shape_penalty, variational = variational, variational_mode = variational_mode, variational_GNN = variational_GNN, variational_GNN_mol = variational_GNN_mol, cosine_penalty = cosine_penalty, beta = beta, predict_pairwise_properties = predict_pairwise_properties, pairwise_property_factor = pairwise_property_factor, predict_mol_property = predict_mol_property, mol_property_factor = mol_property_factor)
val_batch_sizes.append(batch_size)
val_stop_losses.append(stopToken_loss)
val_next_losses.append(next_loss)
val_focal_losses.append(focal_loss)
val_attachment_losses.append(attachment_loss)
val_bond_losses.append(bond_loss)
val_N_next_losses.append(N_next_loss)
val_N_focal_losses.append(N_focal_loss)
val_N_attachment_losses.append(N_attachment_loss)
val_N_bond_losses.append(N_bond_loss)
val_stop_accuracies.append(stop_accuracy)
val_next_accuracies.append(next_atomFragment_accuracy)
#val_mol_sizes.append(mol_size)
#val_subgraph_sizes.append(subgraph_size)
val_shape_losses.append(shape_loss)
val_KL_losses.append(KL_loss)
val_stop_shape_losses.append(stop_shape_loss)
val_cosine_losses.append(cosine_loss)
val_pairwise_property_losses.append(pairwise_property_loss)
val_N_pairwise_targets_sizes.append(N_pairwise_targets)
val_mol_prop_losses.append(mol_prop_loss)
val_stop_loss.append( float(np.nansum(np.array(val_stop_losses) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_next_loss.append(float(np.nansum(np.array(val_next_losses) * np.array(val_N_next_losses))) / sum(np.array(val_N_next_losses)))
val_focal_loss.append(float(np.nansum(np.array(val_focal_losses) * np.array(val_N_focal_losses))) / sum(np.array(val_N_focal_losses)))
val_attachment_loss.append(float(np.nansum(np.array(val_attachment_losses) * np.array(val_N_attachment_losses))) / sum(np.array(val_N_attachment_losses)))
val_bond_loss.append(float(np.nansum(np.array(val_bond_losses) * np.array(val_N_bond_losses))) / sum(np.array(val_N_bond_losses)))
val_epoch_number.append(epoch)
val_stop_accuracy.append(float(np.nansum(np.array(val_stop_accuracies) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_next_accuracy.append(float(np.nansum(np.array(val_next_accuracies) * np.array(val_N_next_losses))) / sum(np.array(val_N_next_losses)))
#val_mol_size.append()
#val_subgraph_size.append()
val_shape_loss.append(float(np.nansum(np.array(val_shape_losses) * np.array(val_N_next_losses))) / sum(np.array(val_N_next_losses)))
val_KL_loss.append( float(np.nansum(np.array(val_KL_losses) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_stop_shape_loss.append(float(np.nansum(np.array(val_stop_shape_losses) * np.array(val_N_next_losses))) / sum(np.array(val_N_next_losses)))
val_cosine_loss.append( float(np.nansum(np.array(val_cosine_losses) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_pairwise_property_loss.append(float(np.nansum(np.array(val_pairwise_property_losses) * np.array(val_N_pairwise_targets_sizes))) / sum(np.array(val_N_pairwise_targets_sizes)))
val_mol_prop_loss.append( float(np.nansum(np.array(val_mol_prop_losses) * np.array(val_batch_sizes))) / sum(np.array(val_batch_sizes)))
val_logger(f'iteration: {iteration}, stop_loss:{val_stop_loss[-1]}, next_loss: {val_next_loss[-1]}, focal_loss: {val_focal_loss[-1]}, attachment_loss: {val_attachment_loss[-1]}, bond_loss: {val_bond_loss[-1]}, stop_accuracy: {val_stop_accuracy[-1]}, next_accuracy: {val_next_accuracy[-1]}, shape_loss: {val_shape_loss[-1]}, KL_loss: {val_KL_loss[-1]}, stop_shape_loss: {val_stop_shape_loss[-1]}, cosine_loss: {val_cosine_loss[-1]}, pairwise_property_loss: {val_pairwise_property_loss[-1]}, mol_prop_loss: {val_mol_prop_loss[-1]}')
logger(f'finished validating...\n')